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INTRODUCTION: The Molecular Markers Of Chronic Pain Subtypes grant funding the 
Veterans Integrated Pain Evaluation Research (VIPER) Study was designed with two aims in 
mind: The first was to better categorize and describe the subtypes of chronic residual limb after 
amputation and the second was to identify pain biomarkers and novel analgesic pathways using a 
systems biology approach. After successfully enrolling 124 amputees from Walter Reed National 
Military Medical Center, collecting blood samples and granular phenotypic data we have 
successfully, and for the first time in a rigorous way, defined the clinical subtypes of chronic 
residual limb pain and we have identified multiple inflammatory and neural plasticity-related 
pathways that are differentially regulated in amputees with significant chronic pain. 

KEYWORDS: Chronic Pain, Chronic Post-surgical pain, Chronic residual limb pain, Chronic 
phantom limb pain, Neuropathic pain, Regional anesthesia, neuroinflammation, neural 
plasticity. 

OVERALL PROJECT SUMMARY: The Molecular Markers of Chronic Pain Subtypes study 
has successfully met all goals described in the initial application. This study was designed to 
better define the types of chronic pain that occur after amputation and to find molecular markers 
of those subtypes with the hope that this would highlight novel analgesic pathways for future 
treatment. In addition, we found that existing battlefield protocols encouraging far-forward 
regional anesthesia catheters with extended treatment duration were associated with reduced 
neuropathic pain after amputation. The four major results from this study are summarized below: 

- Metabolomic and DNA methylation results from this trial highlighted two putative novel 
analgesic pathways that are now being studied by our group in a follow on grant titled 
“VIPER: Chronic Pain after Amputation: Inflammatory Mechanisms, Novel Analgesic 
Pathways, and Improved Patient Safety.” These two markers of residual limb pain, TGR5 
and wnt, may offer new, non-opioid analgesic targets. 

- This study demonstrated that the clinical diagnostic algorithm we used for intrastudy 
post-amputation pain subtype adjudication agrees well with known rates of residual limb 
pain incidence and highlights the incidence of more specific types of neuropathic pain 
(neuroma and complex regional pain syndrome (CRPS)) that have previously been poorly 
defined in the literature. 

- This study found that the presence of regional anesthesia catheters in this patient 
population was associated with decreased rates of chronic neuropathic pain, highlighting 
the importance of continuing to encourage far-forward placement of regional catheters on 
the battlefield. 

- Exome sequencing data revealed polymorphisms in a number of important neuroplastic 
and inflammatory pathways in patients who went on to develop significant residual limb 
pain and cytokine array data suggest that an unresolved pro-inflammatory environment 
may be responsible for the development of chronic post-amputation pain.  



 
 
Study Task 1 
 
We will enroll subjects between 3 and 18 months after amputation for traumatic injury in an 
observational study of different subtypes of post amputation chronic pain.  
 
(a) Human subjects approval.  
We expect this subtask to take 6-9 months. We will obtain IRB approval at Walter Reed Army 
Medical Center, in conjunction with our collaborator Dr Buckenmaier and his colleagues at 
DVPMI. We will submit the initial request for approval by the end of January 2011, and are 
advised the process is lengthy and may require several resubmissions. The first project 
milestone is thus IRB approval to enroll subjects at WRAMC, and we expect to reach this no 
later than 10/1/2011. 
 
(b) Human subject enrollment. 
We expect to enroll 165 amputee soldiers at WRAMC over the course of this 3-year project. 
The second project milestone is enrollment of the first subject by 12/1/2011. In order for the 
proteomic experiments to have sufficient power we need a minimum of 90 subjects. We will try 
and enroll as many subjects as we can in the first 12 months after IRB approval. There are 
several hundred potentially eligible patients undergoing treatment at MATC as of December 
2010. The third project milestone is thus enrollment of a minimum of 90 subjects by 12/1/2012. 
 
Study Task 1 – Year 4 Summary Report 
 
We completed enrollment of 124 patients. We maintained a near 100% completion of the case 
report forms, with less than 1% missing data. In brief, there are 124 patients of whom 80 (64%) 
are cases and 44 (36%) controls. The incidence of residual limb pain is 76/124 (61%) and of 
phantom pain 76/124 (61%). The subtypes of residual limb pain are neuroma (37/124), mosaic 
(8/124), CRPS (15/124) and somatic (31/124). While these incidences are in keeping with the 
previously published rates, the pain subtyping process is a novel contribution to the scientific 
literature, and is summarized in Table 1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1: Chronic pain subtypes following adjudication of amputees enrolled in the Veterans Integrated Pain 
Evaluation Research Study 

Study Task 2 – Biomarker Discovery (Aims 1 & 2) 
i. Proteomics

Duration 12 months 
Milestone Final data back from Duke Core 

ii. Genotyping
Duration 6 months 
Milestone Final data back from Duke Core 

iii. Sequencing
Duration 9 months 
Milestone Final data back from Duke Core 

Study Task 2 – Year 3 Summary Report 

Proteomic and Metabolomic Discovery Subtask (i) 
We paralleled our human biomarker and novel pathway discovery work in humans with a 
mouse peripheral nerve injury model that was developed under the direction of another 
member of our lab, Dr. Thomas Van de Ven. This project used a mouse peripheral nerve injury 
model that approximates the pathology present in human amputees. We have performed 
metabolomic analysis of various mouse tissues from this model, including blood plasma, for 
cross-species verification of potential biomarkers of interest. 

We completed metabolomic analysis on the 80 patient VIPER discovery cohort and used the 
resulting data, with cross-species verification in mice, to identify a bile acid signaling pathway 
as differentially expressed in patients with pain after amputation. This pathway, which includes 
the g-protein coupled receptor TGR5 and the nuclear receptor FXR, is known to be a signaling 
pathway important in metabolism and inflammation but only recently has there been evidence 
that it may play a role in nociception. We used the results from our mouse model and VIPER 



patient cohort to argue that TGR5 may have a role as a novel analgesic target and we have 
begun to study this hypothesis using funding from a follow-on CDMRP Neurosensory grant. 

Table 2: Ratio of metabolite concentration between case and control in mice and humans. In mice, cases have spared 
nerve injury and controls have sham surgery. In humans, cases have pain after amputation and controls do not. 
Green shading shows increase in metabolite concentration in cases vs controls and red shows decrease concentration 
in cases vs. controls. 

We also completed unbiased proteomic analysis of blood plasma from the 80 patient VIPER 
discovery cohort and found a number of differentially expressed proteins listed in Table 3, 
including a number involved in neuroinflammation.  

Table 3: Differentially expressed proteins as a function of pain identified from blood plasma collected 3-18 
months after amputation. 

We plan to perform a similar experiment in our mouse model to provide cross-species 
verification of these results in the near future. 

We also performed cytokine array analysis on the 80 patient VIPER discovery cohort and 
found that a number of pro-inflammatory cytokines were upregulated in these patients. This is 
surprising since these patients should be fully recovered from initial injury with any 
accompanying inflammatory response already resolved. Our findings suggest that the 
inflammatory processes generated by amputation may last much longer than previously 
thought and may be responsible for the deleterious transition from acute to chronic post-
amputation pain. These results are summarized in Table 4 below and have been submitted as a 
manuscript to the journal Pain. That manuscript is now in the revision stage and likely to be 
published in the next few months. 



Table 4. Inflammatory mediators found to either positively or negatively correlate with average residual limb pain 
intensity and pain catastrophizing using blood plasma from patients 3-18 months after amputation. 

Systemic Mediator Average Pain P value PCS P value 
IL-13      -0.45 0.000 -0.29 0.010 
IL-8          0.26 0.024 0.25 0.030 
IL-12       0.31 0.006 0.24 0.037 
TNF-β       0.43 0.000 0.39 0.001 
PIGF        0.31 0.008 0.34 0.003 
Tie2       0.35 0.002 0.22 0.059 
ICAM-1     0.43 0.000 0.44 0.000 

 
Genotyping and Epigenetic Discovery Subtask (ii) 
We completed DNA methylation array analysis on the 80 patient VIPER discovery cohort. 
This is an unprecedented dataset and represents an incredible opportunity to learn the 
mechanisms underlying the transition from acute to chronic pain in military amputees. We are 
currently working with our statistician, Dr. Yi-Ju Li, who is an Associate Professor in the 
Department of Biostatistics and Bioinformatics at the Center for Human Genetics in the Duke 
Department of Medicine. She and her postdoctoral candidate are performing the complex 
convergent pathway analysis required to complete our search for novel pain biomarkers and 
pathways. The initial results led to identification of the mapk and wnt pathways as 
differentially methylated in patients with and without pain after amputation.  The MAPK 
pathway has long been studied as an important regulator of nociception, but wnt has only 
recently been recognized as an important generator of nociceptor sensitivity. Because of these 
findings, we have received follow on funding to study the role of the wnt pathway in 
neuropathic pain. Over the next three years we hope to continue targeted validation of these 
findings in both this VIPER cohort and in the VIPER Valproate cohort being collecting in a 
separate study lead by a co-investigator on this grant, Dr. Thomas Buchheit. Also, we hope to 
determine whether the wnt pathway alters nociception due to direct effects on neuroplasticity, 
modulation of neuroinflammation, or both. Table 5, below, lists the wnt signaling pathway 
members would to be differentially methylated in VIPER patients with residual limb pain 
compared to those without. 
 

Table 5: Wnt pathway constituents (from DAVID online functional annotation tool) with specific CpG locations 
hypomethylated in VIPER patient cases vs controls.  

Gene CpG site Delta beta P-value FDR 

CREBBP cg04336433 -0.1 0.003223791 0.055758138 

TBL1X cg04414946 -0.1 0.00167226 0.055758138 

NFATC1 cg07740306 -0.1 0.002908787 0.055758138 

PRKCG cg14045992 -0.1 0.003243531 0.055758138 

CAMK2B cg09126559 -0.1 7.59977E-04 0.055758138 

Wnt5a cg17553300 -0.1 3.61E-06 0.047041308 

CTBP1 cg07825433 -0.11 0.002410452 0.055758138 

NFATC1 cg21848624 -0.11 0.005915706 0.058800131 

CAMK2B cg06746426 -0.12 0.001388434 0.055758138 

PRICKLE2 cg03170262 -0.12 0.002224953 0.055758138 

NKD2 cg12192884 -0.12 0.00440416 0.056502306 

CTBP2 cg15205441 -0.12 0.001907882 0.055758138 

LRP5 cg07985116 -0.15 0.003865465 0.05588898 



Whole Exome Sequencing Subtask (iii) 
We also successfully performed whole exome sequencing on the entire 124 patient cohort and 
received all data back from the sequencing core facility. We completed full analysis of this 
dataset. As planned, this cohort did not have the power to identify individual polymorphisms 
that may be associated with pain, but we were able to identify multiple neuroinflammatory and 
neuroplasticity related pathways containing polymorphisms in amputees with residual limb 
pain. Using Ingenuity IPA software, we were able to obtain a list of most enriched pathways. 
These pathways are found below in Table 6. The manuscript describing these findings is now 
in preparation. Interestingly, the most significantly enriched pathway, STAT3, has recently 
been implicated as very important in the pathogenesis of chronic neuropathic pain. Also, the 
FXR/RXR pathway is a bile acid nuclear receptor pathway and provides cross-molecular 
confirmation of our metabolomics based finding that the bile acid pathway is important in 
chronic post-amputation pain.  

Table 6: Pathways found to be enriched in rare variants when comparing whole exome sequencing results in 
amputees with significant chronic post-amputation pain and those without. Results from Ingenuity IPA core 
analysis. 

Ingenuity Canonical Pathways  -log(p-value) Ratio 
STAT3 Pathway 3.14E00 1.64E-01 
LXR/RXR Activation 2.91E00 1.32E-01 
Nitric Oxide Signaling in the Cardiovascular System 2.86E00 1.4E-01 
NF-κB Signaling 2.75E00 1.16E-01 
FXR/RXR Activation 2.69E00 1.26E-01 
eNOS Signaling 2.58E00 1.2E-01 
Neuropathic Pain Signaling In Dorsal Horn Neurons 2.41E00 1.3E-01 
Virus Entry via Endocytic Pathways 2.39E00 1.35E-01 
nNOS Signaling in Neurons 2.36E00 1.7E-01 
Caveolar-mediated Endocytosis Signaling 2.21E00 1.41E-01 
PTEN Signaling 2.19E00 1.19E-01 
Prolactin Signaling 2.13E00 1.37E-01 
Axonal Guidance Signaling 2.12E00 8.55E-02 
Assembly of RNA Polymerase I Complex 1.94E00 3.33E-01 
IL-15 Production 1.8E00 1.85E-01 
T Helper Cell Differentiation 1.75E00 1.27E-01 
IL-12 Signaling and Production in Macrophages 1.7E00 1.04E-01 
NF-κB Activation by Viruses 1.68E00 1.23E-01 
Aldosterone Signaling in Epithelial Cells 1.62E00 9.87E-02 
Neuregulin Signaling 1.59E00 1.14E-01 
VEGF Family Ligand-Receptor Interactions 1.58E00 1.18E-01 
IL-4 Signaling 1.58E00 1.18E-01 
IL-17A Signaling in Airway Cells 1.58E00 1.25E-01 
Tyrosine Degradation I 1.55E00 4E-01 
Gap Junction Signaling 1.55E00 9.68E-02 
Non-Small Cell Lung Cancer Signaling 1.54E00 1.23E-01 

CREBBP cg01383349 -0.16 9.67033E-04 0.055758138 

CCND1 cg06741896 -0.17 0.003372107 0.055758138 

SMAD3 cg07882838 -0.2 8.21618E-04 0.055758138 



Synaptic Long Term Potentiation 1.45E00 1.01E-01 
TCA Cycle II (Eukaryotic) 1.43E00 1.74E-01 
Agrin Interactions at Neuromuscular Junction 1.41E00 1.16E-01 
Growth Hormone Signaling 1.41E00 1.16E-01 
Glutamate Receptor Signaling 1.4E00 1.23E-01 
Glioma Signaling 1.39E00 1.05E-01 
tRNA Splicing 1.35E00 1.43E-01 

 
KEY RESEARCH ACCOMPLISHMENTS  
• Completed patient enrollment at 124. 
• Completed genome wide DNA methylation, miRNA array, unbiased plasma proteomic 

and global plasma metabolomic data received on 79 patient discovery cohort and whole 
exome sequencing on all 124 patients 

• Multiple putative pain pathways identified with two pathways chosen for directed 
mechanistic investigation. Each of these pathways (TGR5/FXR and Wnt) may provide 
potential therapeutic targets in the future. This follow on work is being funded by 
Department of Defense CDMRP grant W81XWH-15-2-0046. 

• Omega-3 fatty acid levels from VIPER metabolomics correlated with post-amputation 
pain leading to testing of omega-3 fatty acid supplementation in mice with nerve injury 
and publication submitted. 

• Cytokine array analysis revealed significant differences in mulitple cytokines between 
amputees with and without pain. These results have been submitted for publication in the 
journal Pain and that manuscript is now in revision.  

• Follow-on intervention study currently enrolling (PT110575, T Buchheit PI). 
• Follow-on CDMRP Neurosensory Research Award proposal (MR130082) funded to 

study the analgesic potential of the pathways discovered from VIPER data analysis. 
• Two original research publications completed, four review articles completed, one 

original research publication in revision, and one original research article actively in 
preparation. 

• 10 conference abstracts and posters presented at regional and national pain and 
anesthesiology meetings 

 
CONCLUSION: The clinical and biological data collected in this study have not only helped 
define the incidence and nature of pain subtypes after amputation but have revealed a number 
of signaling pathways that may serve both as biomarkers of chronic post-amputation pain but 
have provided the insight necessary to continue study of these pathways with the goal of novel 
non-opioid analgesic development.  In addition, this study showed a significant association 
between the presence of regional anesthesia catheters and reduced incidence of neuropathic 
pain after amputation suggesting that the current military efforts to provide far-forward 
regional anesthesia may be reducing the burden of chronic post-nerve injury pain in battlefield 
amputees.  
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ABSTRACT 

Objective: The omega-3 fatty acids docosahexaenoic (DHA) and eicosapentaenoic 

(EPA) are precursors to a family of analgesic and neuroprotective small pro-resolution 

lipid mediators (PRLMs) that include the resolvins and neuroprotectins. We 

hypothesized that perioperative supplementation with DHA and EPA can prevent post-

surgical pain by increasing endogenous levels of PRLMs. 

Methods: To identify targets for novel analgesics, our lab conducted a global 

metabolomics study of 80 human patients with traumatic amputations as part of the 

Veterans Integrative Pain Evaluation Research clinical trial. We analyzed the results of 

this study for associations between omega-3 fatty acids and pain severity. We then 

treated nerve-injured mice with perioperative oral DHA and EPA with or without aspirin 

to determine whether DHA, EPA and their PRLM metabolites reduce mechanical 

allodynia in a mouse model of peripheral nerve injury. 

Results: There was a negative correlation between DHA and EPA concentration and 

neuropathic pain severity in human traumatic amputees. We found that mice treated 

with both DHA/EPA or DHA/EPA with aspirin had significantly reduced mechanical 

allodynia in the ipsilateral paw compared to injured control animals. There was no 

significant difference in allodynia reduction between the treatment groups. Also, there 

was a trend toward increased plasma PRLMs neuroprotectin D1 and protection DX in 

mice treated with DHA and EPA with aspirin.  

Conclusion: Our results suggest that perioperative DHA/EPA supplementation may 

provide a safe, inexpensive and effective way to increase PRLM levels and prevent 

chronic pain in humans.  



Keywords: Chronic postoperative pain, inflammation, neuropathic pain, omega-3 fatty 

acids 

INTRODUCTION 

Surgical procedures, including mastectomy, amputation, and thoracotomy, are 

followed by severe and disabling chronic neuropathic pain in 5-10% of cases (1). This 

post-surgical neuropathic pain and other chronic pain syndromes represent an 

enormous public health burden, annually costing the United States upwards of $630 

billion in direct health expenses and lost productivity (2). Despite our success at 

managing acute post-surgical pain, current therapeutic options for the chronic pain that 

follows are limited. As such, there is an immediate need for novel preventive analgesics. 

Chronic neuropathic pain is believed to partially result from neuroinflammation 

following nerve injury and subsequent peripheral and central sensitization that occurs as 

a consequence of this inflammation (1-3). As it has become increasingly appreciated 

that initiation and resolution of inflammation are distinct processes (4), novel therapeutic 

strategies aimed at interrupting the inflammation and switching to a resolving state 

seem especially promising.  

Growing evidence suggests that the novel pro-resolving lipid mediator (PRLM) 

metabolites of the omega-3 fatty acids docosahexaenoic (DHA) and eicosapentaenoic 

acids (EPA) may achieve this aim. These oxylipins, which include resolvins, 

neuroprotectins, and maresins, are generated via several metabolic pathways involving 

lipoxygenase (LOX) or cyclooxygenase (COX) enzymes at sites of tissue injury (5,6). Of 

note, there are two R-series resolvins that are generated from DHA and EPA by the 



aspirin acetylated COX2 enzyme (5). Pro-resolving oxylipins have proven potent anti-

inflammatory agents: for example, resolvins are 1000 times more effective than DHA or 

EPA and 100 times more effective than morphine at mitigating inflammatory pain (7). 

Resolvins and neuroprotectins have been extensively studied in multiple rodent models 

of pain and found to prevent as well as treat established inflammatory, post-surgical, 

and neuropathic pain (6,10). These effects are attributed to their ability to actively 

resolve inflammation as well as inhibit neural plasticity, glial activation, and transient 

receptor potential (TRP) channels (8-10).  

The pro-resolving properties of resolvins and neuroprotectins likely explain the 

wide therapeutic applications of omega-3 polyunsaturated fatty acids (PUFAs). 

Therapeutic benefit of supplementation with omega-3 PUFAs has long been suspected 

in inflammatory and cognitive diseases (11,12), and has been well established in the 

case of heart disease despite incomplete understanding of its underlying mechanisms 

(13,14). By providing the raw material to enhance PRLM production at the site of injury, 

omega-3 fatty acid supplementation may act as a safe and novel preventive analgesic 

therapy.  

We have recently completed enrollment of one hundred and twenty four recent 

active duty military post-traumatic amputees at Walter Reed National Military Medical 

Center receiving care at the Defense and Veterans Center for Integrative Pain Medicine 

(DVCIPM) under the Veterans Integrated Pain Evaluation Research Study (VIPER). 

Patients were enrolled three to eighteen months after amputation. Each patient was 

categorized as “case” or “control” based on S-LANSS severity score and blood samples 

were drawn for multiple types of data analysis, including global metabolomics profiling 



that included quantification of plasma fatty acids allowing correlation with post-

amputation pain scores. 

 In addition, we use a murine spared-nerve injury model to test whether 

perioperative supplementation with omega-3 PUFAs:  (A) Increases endogenous levels 

of pro-resolving oxylipins in mice with co-existing peripheral nerve injury, (B) attenuates 

chronic neuropathic pain in a mouse model of peripheral nerve injury and (C) if the 

addition of aspirin augments pro-resolving oxylipin levels and improves pain relief.  

 

METHODS 

VIPER Study Design and sample collection 

After IRB approval, 124 subjects were enrolled at Walter Reed National Military 

Medical Center (WRNMMC) in this retrospective cohort study.  Multiple pain and 

psychometric questionnaires were administered to each individual to be completed with 

minimal guidance by a healthcare provider. One of the included questionnaires was the 

self-report version of the Leeds Assessment of Neuropathic Symptoms and Signs score 

(S-LANSS), which includes a question asking each patient to report average pain 

severity in the affected limb over the past week. We termed this question the S-LANSS 

severity score. Patients were designated as “cases” if they had an S-LANSS severity 

score greater or equal to 3.  

Subjects were included if they were a military health care beneficiary age 18 

years or older and undergoing treatment at WRNMMC with a diagnosis of post injury 

amputation of all or part of one limb.  Amputation injury must also have occurred 

between 3 and 18 months prior to enrollment. 



Patients were excluded if they were afflicted with severe traumatic brain injury, 

significant cognitive deficits, substantial hearing loss, spinal cord injury with permanent 

or persistent deficits, ongoing tissue damage pain, infection, bone spur, poorly fitting 

prosthesis, or hip disarticulation.   Blood samples were collected in EDTA containing 

tubes, centrifuged for 15 minutes at 1600G at 4°C within ~30 minutes of sample 

collection, and plasma pipetted off and aliquoted into 1.8ml cryovials. 

 

Unbiased Plasma Metabolomics 

Metabolomics experiments were conducted by Metabolon Inc (Durham NC) 

Sample Preparation:  The sample preparation process was carried out using the 

automated MicroLab STAR® system from Hamilton Company.  Recovery standards 

were added prior to the first step in the extraction process for QC purposes.  Sample 

preparation was conducted using a proprietary series of organic and aqueous 

extractions to remove the protein fraction while allowing maximum recovery of small 

molecules.  The resulting extract was divided into two fractions: one for analysis by LC 

and one for analysis by GC.  Samples were placed briefly on a TurboVap® (Zymark) to 

remove the organic solvent.  Each sample was then frozen and dried under vacuum.  

Samples were then prepared for the appropriate instrument, either LC/MS or GC/MS. 

Essential fatty acid sub-analysis required the LC/MS platform.       

Liquid chromatography/Mass Spectrometry (LC/MS, LC/MS2):  The LC/MS 

portion of the platform was based on a Waters ACQUITY UPLC and a Thermo-Finnigan 

LTQ mass spectrometer, which consisted of an electrospray ionization (ESI) source and 

linear ion-trap (LIT) mass analyzer.  The sample extract was split into two aliquots, 



dried, then reconstituted in acidic or basic LC-compatible solvents, each of which 

contained 11 or more injection standards at fixed concentrations.  One aliquot was 

analyzed using acidic positive ion optimized conditions and the other using basic 

negative ion optimized conditions in two independent injections using separate 

dedicated columns.  Extracts reconstituted in acidic conditions were gradient eluted 

using water and methanol both containing 0.1% Formic acid, while the basic extracts, 

which also used water/methanol, contained 6.5mM Ammonium Bicarbonate.  The MS 

analysis alternated between MS and data-dependent MS2 scans using dynamic 

exclusion. 

Accurate Mass Determination and MS/MS fragmentation (LC/MS), 

(LC/MS/MS):  The LC/MS portion of the platform was based on a Waters ACQUITY 

UPLC and a Thermo-Finnigan LTQ-FT mass spectrometer, which had a linear ion-trap 

(LIT) front end and a Fourier transform ion cyclotron resonance (FT-ICR) mass 

spectrometer backend.  For ions with counts greater than 2 million, an accurate mass 

measurement could be performed.  Accurate mass measurements could be made on 

the parent ion as well as fragments.  The typical mass error was less than 5 ppm.  Ions 

with less than two million counts require a greater amount of effort to 

characterize.  Fragmentation spectra (MS/MS) were typically generated in data 

dependent manner, but if necessary, targeted MS/MS could be employed, such as in 

the case of lower level signals. 

The human plasma dataset comprised a total of 363 named biochemicals and 

295 unnamed compounds. Following log transformation and imputation with minimum 

observed values for each compound, a One Way ANOVA with Contrasts and a Welch’s 



t-Test were used to identify biochemicals that differed significantly between 

experimental groups 

Animals 

All animal experiments were approved by the Institutional Animal Care & Use 

Committee at Duke University and were conducted in accordance with the U.S. 

Government Principles for Utilization and Care of Vertebrate Animals for Testing, 

Research, and Training. 8-10 week-old male C57BL/6 mice ordered from Charles River 

Laboratories (Wilmington, MA) were used.  

The mice were housed in cages of 5 and had access to chow and water ad 

libitum. The chow was either Picolab® Rodent Diet 20 (5053) or Rodent Laboratory Diet 

(5001) from LabDiet® (St. Louis, MO), both of which contain omega-3 to omega-6 ratios 

of about 0.15.  

Drugs and Drug Administration 

Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were purchased 

from Cayman Chemical as solutions in ethanol. For these experiments, after 

evaporating the ethanol solvent under a gentle nitrogen stream, DHA and EPA were 

delivered in a soybean oil control vehicle (Crisco Pure Vegetable Oil) containing the 

anti-oxidant Vitamin E. Soybean oil was chosen as the control vehicle for its low omega-

3 to omega-6 PUFA ratio of 0.14 (15), which is similar to the mice’s background diet. 

Acetylsalicylic acid (ASA) was purchased from Sigma.  



All treatments were delivered daily to the mice via oral gavage, on the day before 

surgery through post-operative day 12. Mice in the appropriate treatment groups 

received approximately 200 mg/kg of DHA/EPA and 30 mg/kg of ASA per treatment. 

Dosing estimates are based on a 26g mouse, the average mass of an adult C57BL/6 

mouse. Control groups received soybean oil over the same time span. The DHA and 

EPA were delivered together in the soybean oil carrier. ASA was delivered in water.  

 

Spared-Tibial Nerve Injury Surgery 

Spared-tibial nerve injury (SNI) surgery was performed under 2-3% isofluorane 

anesthesia, as described by Shields (16). The left hind limb was immobilized in a lateral 

position. After skin incision at the mid-thigh level and dissection through the underlying 

muscle, the sciatic nerve trifurcation was exposed. The common peroneal and sural 

nerve branches were tightly ligated with 6-0 silk sutures and then severed. Throughout 

the procedure, the tibial nerve was preserved by carefully avoiding any stretch or nerve 

contact. For sham surgeries, the sciatic nerve trifurcation was exposed without imposing 

any nerve injury.  

Whole blood was collected from anesthetized mice (3-4% isofluorane) via cardiac 

puncture. To puncture the heart, a 23-gauge needle was inserted left of and under the 

sternum in the direction of the head at a 25 degree angle. Once blood was seen in the 

syringe, negative pressure was applied to the syringe. The whole blood was collected in 

a 1-mL EDTA tube and centrifuged at 5000 rpm for 5 minutes at room temperature. 

Plasma was then collected from the top of the centrifuged tube and stored at -80C.  

 



Behavioral Assays 

Mice were habituated to the testing environment for 2 days prior to baseline 

testing and for at least 30 minutes on each subsequent test day. The mice were placed 

in plastic boxes on an elevated wire-mesh apparatus. Mechanical allodynia was 

assessed by stimulating the left hind paw with Von Frey filaments of logarithmically 

increasing stiffness (0.04 – 2.00 g, Stoelting Co, Wood Dale, IL), applied 

perpendicularly to the plantar surface. Specifically, the hindpaw was stimulated in the 

distribution of the tibial nerve, in the center of the plantar surface (17). The 50% paw 

withdrawal thresholds were determined using the up-down method of Dixon (18). 

Testing was performed by a blinded researcher at baseline, post-operative day (POD) 3 

and every following third day, finishing on POD 21.   

 

Plasma Oxylipin Assays 

 Plasma oxylipin assays were performed at the Duke Proteomics and 

Metabolomics Shared Resource. Stable Isotope Labeled (SIL) oxylipin standard 

solutions were purchased from Cayman Chemical (Ann Arbor, MI).  Solutions were 

combined in a stock SIL mixture in methanol which was further diluted with acetonitrile 

to a final concentration of 6.25 nM (IS Working Solution). Analytical standard solutions 

were purchased from Cayman Chemical (Ann Arbor, MI).  Solutions were combined in a 

stock mixture containing 1 µg of each compound in methanol which was further diluted 

with 1:1 acetonitrile:methanol to prepare Spiking Solutions from which Quality Control 

samples (QC) and calibration standards were made. Calibration standards and QCs 

were prepared in 50 mg/mL Bovine Serum Albumin (BSA) in 50 mM ammonium 



bicarbonate (AmBic).  Calibration standards were analyzed in duplicate bracketing the 

study samples and QCs.  The concentrations of the calibration standards were 10, 25, 

50, 100, 250, 500, 1000, 5000, 10000, and 50000 pg/mL. QC samples were prepared at 

three concentrations 40000, 4000, and 400 pg/mL.  These were analyzed in duplicate 

with the study samples. 

Samples were extracted by protein precipitation with acetonitrile using a Biotage 

(Uppsala, Sweden) PLD+ protein and phospholipid removal 96-well plate. Plasma 

samples were thawed, mixed, and spun at a slow speed to pellet any solids. For each 

blank, calibration standard, QC, and study sample 800 µL IS Working Solution were 

added to the appropriate well of the protein and phospholipid removal 96-well plate.  

800 µL acetonitrile were added to each well to be used for double blanks.  Aliquots of 90 

µL blank, calibration standard, and QC sample were added to the appropriate wells.  

Plasma study samples were added in 90 µL aliquots when possible. The extraction 

plate was then capped, mixed for 10 minutes at room temperature, and frozen for 10 

minutes at -20ºC.  The collection 96-well plate, containing a solution with 5 ul glycerol as 

carrier, was positioned below the extraction plate in a vacuum block, then vacuum was 

applied for 5 minutes to elute the samples.  The collected samples were dried under a 

gentle stream of nitrogen then reconstituted in 50 µL 1:1 acetonitrile:methanol.  5 µL 

were injected for LC/MS/MS analysis. 

LC-MS/MS analysis of oxylipin molecules was performed based on the method of 

Laiakis et al [site http://www.ncbi.nlm.nih.gov/pubmed/25126707]. Briefly, UPLC 

separation was performed using a Waters (Milford, MA) Acquity UPLC using an Acquity 

2.1 mm x 10 mm 1.7 µm BEH C18 column.  Mobile phase A was water with 0.1% acetic 

http://www.ncbi.nlm.nih.gov/pubmed/25126707


acid and mobile phase B was 90:10 acetonitrile:isopropyl alcohol. Samples were 

introduced directly into a Xevo TQ-S mass spectrometer (Waters) using negative 

electrospray ionization operating in the Multiple Reaction Monitoring (MRM) mode.  

MRM transitions (compound-specific precursor to product ion transitions) for each 

analyte and internal standard were collected over the appropriate retention time.  The 

MRM data were imported into Waters application TargetLynx™ for peak integration, 

calibration, and concentration calculations.  Analytes for which analytical standards 

were not included were quantified against the standard curve of an analyte from the 

same or similar compound class. 

 

Statistical Analysis 

Essential fatty acids concentrations from the metabolomics dataset were chosen 

for further analysis using GraphPad Prism 6 software (GraphPad Software, San Diego). 

Linear regression analyses were performed to assess the relationship between S-

LANSS severity score and the plasma levels of omega-3 PUFA and omega-6 PUFAs. 

Patients with S-LANSS severity scores of 9 and 10 were excluded from this analysis, as 

there was only 1 patient per group.    

Statistical analysis of mouse behavioral data was also performed in GraphPad. 

Paw withdrawal thresholds were normalized to baseline and are presented as mean 

percent of baseline with standard error of the mean. Missing data was imputed with the 

mean of the shared treatment group’s paw withdrawal threshold for the time point. The 

paw withdrawal thresholds of the treatment groups were compared using repeated-

measures two-way ANOVA and ad-hoc Tukey tests corrected for multiple comparisons.  



Area under the curve and quadratic polynomial regression analyses of the paw 

withdrawal thresholds were also performed, the details of which are available in the 

Supplementary Methods.   

Oxylipin assay results were also analyzed in GraphPad. One outlier was 

excluded from each of the SNI control and DHA/EPA treatment groups. Values below 

the lower limit of quantification (LLQ) were imputed with the LLQ, thereby biasing 

towards the null hypothesis. We pre-specified comparisons of the DHA/EPA groups with 

and without aspirin with the SNI control group. These comparisons were made using 

unpaired t-tests.  

RESULTS 

Plasma omega-3 PUFA concentration and omega-3 to omega-6 PUFA ratio are 

negatively correlated with severity of chronic post-amputation pain in humans  

To assess the relationship between omega-3 PUFA plasma levels and pain in 

the VIPER patients, we performed linear regressions of DHA, EPA, and their summed 

plasma levels versus S-LANSS severity score (Figure 1A,B). The analyses showed 

significant negative correlation between both individual or summed omega-3 levels and 

S-LANSS severity score. The same analysis was done using the omega-6 PUFAs 

arachidonic acid, linoleic acid, and n-6 docosapentaenoic acid (DPA n-6) (Figure 1C). 

No significant correlations were found between S-LANNS severity score and omega-6 

PUFA levels. We were also interested in the relationship between the ratio of omega-3 

to omega-6 PUFAs and pain in the VIPER patients experiencing pain (Figure 1D). 



Linear regression revealed a significant negative correlation between omega-3 to 

omega-6 PUFA ratio and S-LANSS severity score. 

Perioperative supplementation with DHA and EPA attenuates post-nerve injury 

mechanical allodynia in mice. 

To test the effect of DHA and EPA supplementation with and without aspirin on 

mechanical allodynia in mice with surgically induced peripheral nerve injury, we created 

4 groups of 10 mice each. One group underwent sham surgery and received daily 

control soybean oil. The remaining groups all underwent SNI surgery and received daily 

control soybean oil, DHA and EPA, or DHA, EPA, and aspirin.  

We assessed the influence of omega-3 PUFA supplementation on post-operative 

allodynia by comparing the groups’ mean paw withdrawal thresholds across all time 

points (Figure 2). As anticipated, the SNI control mice developed significant mechanical 

allodynia by POD3 (p<0.0001) that peaked on PODs 9-12 and resolved by POD21. We 

found that treatment with DHA and EPA significantly attenuated the development of 

mechanical allodynia compared to SNI controls. The DHA/EPA group had improved 

allodynia compared to SNI on PODs 6, 9, and 15 (>50%, p<0.05), and trended towards 

improved outcome on POD12 (35.2%, p=0.055). Similarly, the treatment group with 

aspirin had substantially improved allodynia compared to SNI on PODs 3 through 12 

(>50%, p<0.05). Aspirin did not appreciably augment the therapeutic effect of omega-3 

PUFA supplementation, as there were no significant differences between the two 

treatment groups. We also performed area under the curve and quadratic regression 

analyses of the paw withdrawal thresholds to confirm the effect of omega-3 



supplementation on mechanical allodynia. These analyses corroborated the above 

results, indicating that omega-3 supplementation interfered with the development of 

robust allodynia seen in SNI controls. (See Supplementary Materials for details).   

 

Perioperative supplementation with DHA and ASA may augment plasma protectin DX 

(PDX) and neuroprotectin D1 (NPD1) in mice. (Figure 3) 

We next created groups of mice identical to those described above to test the 

effect of DHA, EPA, and aspirin supplementation on endogenous levels of pro-resolving 

oxylipins. Plasma samples collected from 5 mice per group on POD12 were analyzed 

using an LC-MS/MS assay. 

 There was a trend towards increased levels of the DHA-derived oxylipins 

protectin DX (PDX) and neuroprotectin D1 (NPD1) in the treatment group treated with 

aspirin compared to the SNI controls (116.4 ± 54.7 pg/mL and 90.3 ± 49.3 pg/mL; 

p=0.07 and p=0.11, respectively). There was no significant difference between the 

DHA/EPA treatment group and the SNI controls. Resolvin D1, resolvin D2, and maresin 

plasma levels were all below the assay’s LLQ and could not be quantified.   

 

DISCUSSION 

Mechanistic understanding of the transition from acute to chronic neuropathic 

pain after nerve injury has advanced significantly over the past decade, but advances in 

preventive therapeutics continue to be slow. In response, there has been increasing 

focus since 2010 on public/private partnerships to advance preventive analgesic 

discovery by standardizing pre-clinical and clinical analgesic studies (19). Recent 



evidence that DHA- and EPA-derived small lipid mediators such as neuroprotectin D1 

can provide preventive analgesia in animal models of post-nerve injury pain has 

provided one of the most intriguing leads toward novel preventive therapeutics (6,20). 

The PRLMs themselves are short lived and difficult to produce in quantity, but 

supplementation with their omega-3 fatty acid precursors offers a possible way to 

increase the concentration of these small lipid mediators at the target injury site. In 

addition, aspirin acetylation of cyclooxygenase has been shown to increase the 

production of a group of aspirin derived PRLMs that may further increase the analgesic 

efficacy of DHA/EPA supplementation (5, 21).  

In this study we found that the plasma concentrations of DHA and EPA in young, 

recent active duty military amputees negatively correlated with chronic post-amputation 

pain severity. It is unclear from this data whether reduced plasma DHA and EPA is a 

result of having already existing chronic pain or whether those patients with diets high in 

omega-3 fatty acids are less likely to develop severe chronic pain after surgery, but this 

intriguing correlation prompted us to study whether supplementation of DHA/EPA in 

mice undergoing peripheral nerve injury (including the nerve transection that occurs in 

amputation) would similarly reduce post nerve injury allodynia and whether this 

supplementation increased plasma PRLM levels. Therefore, we provided oral 

supplementation of DHA and EPA to mice before and after spared-tibial nerve injury 

and found that these injured mice had significantly reduced post-injury mechanical 

allodynia and a trend toward higher plasma neuroprotectin levels. This reduction in 

allodynia continued for 6 days after oral DHA/EPA supplementation was discontinued. 

By day 21 all four experimental groups returned to baseline. Though allodynia reduction 



in the two DHA/EPA treatment groups was dramatic, it is difficult to conclude from this 

data whether supplementation acts as a therapeutic or as a preventive therapeutic due 

to the inherent improvement of mechanical allodynia over time in this particular 

peripheral nerve injury model. There are several models of peripheral nerve injury that 

produce more dramatic and long-lasting allodynia that could be used in future studies to 

verify that DHA/EPA supplementation is preventive and not just therapeutic (22). 

To determine whether DHA/EPA supplementation led to measurable increases in 

plasma PRLMs, we collected blood plasma at post-operative day 12 from mice treated 

in an identical manner to the four groups tested for mechanical allodynia. After LC/MS 

separation and analysis, we found a trend towards higher plasma concentrations of two 

neuroprotectins, NPD1 and PDX. NPD1 has been well studied as an analgesic and 

neuroprotective agent and is one of the few compounds found to provide preventive 

analgesia in a mouse model of peripheral nerve injury (10,20,23). PDX has been less 

well studied in animal pain models, but has been shown to block neutrophil infiltration in 

a mouse model of peritonitis (24). Though plasma concentration changes of these two 

lipids did not reach significance (defined as p-value of 0.05), the trend toward 

neuroprotectin levels is intriguing. Future studies would include increased sample size 

and volume, along with analysis of injured peripheral tissues where these lipids are 

likely formed. Analysis of affected tissue with higher concentrations of these mediators 

may also allow evaluation of resolvin and maresin concentration changes with 

DHA/EPA supplementation, as the amounts of these PRLMs were below the lower limit 

of quantification in this study. Our study also included an aspirin treatment group since 

there are multiple aspirin-triggered PRLMs produced by the aspirin acetylated COX2 



enzyme (5). However, aspirin treatment did not appear to enhance the reduction of 

mechanical allodynia in nerve-injured mice, and the effect of aspirin on the endogenous 

production of 18R-E series resolvins was not measurable since all resolvins in this study 

were present below the lower limit of quantification. 

Though this pilot study did not definitively show that DHA/EPA supplementation 

increases plasma PRLMs, previous studies have demonstrated that supplementation 

with DHA and EPA translates to increased endogenous resolvin levels in healthy 

volunteers (21,25). Also, there is growing evidence that increasing the ratio of omega-3 

to omega-6 fatty acids likely augments the beneficial effects of omega-3 PUFA 

supplementation on multiple disease states (26). Recent work by Ramsden et al 

supports the idea that dietary supplementation with omega-3 fatty acids increases the 

blood concentration of these small lipid mediators while reducing pain symptoms (27). 

This clinical trial concluded that migraine patients receiving a high omega-3 and low 

omega-6 fatty acid diet had significantly higher blood levels of the immediate precursors 

to resolvin and neuroprotectin biosynthesis and also increased resolvin D2 

concentration. They also found that this dietary intervention reduced the incidence of 

migraine headache. Reducing omega-6 fatty acids in the mouse diet in addition to 

DHA/EPA supplementation may produce more dramatic improvements in mechanical 

allodynia and small lipid mediators. This will have to be evaluated in future preclinical 

studies. 

Conclusions: 

 Our results suggest that perioperative DHA/EPA supplementation may provide a 

safe, inexpensive and effective way to increase pro-resolving lipid mediator levels and 



prevent chronic pain in humans. Given the low-risk of side effects and current high 

prevalence of use, omega-3 PUFAs supplementation could easily be applied 

perioperatively. A larger preclinical trial with increased sample size and an added 

experimental group with low omega-6 fatty acid diet is needed to confirm these findings. 

A clinical trial in keeping with the FDA Critical Path initiative and ACTION committee 

goals would be an ideal next step after preclinical confirmation.  

 

Acknowledgements: none 

 

Disclosures/Conflicts of Interest: none 

 

Grant support:  

CDMRP DOD #DM102142 

NIH T32 #2T32GM008600 

 

References 

1. Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and 
prevention. Lancet 2006; 367:1618–25.  

2. Institute of Medicine. Relieving Pain in America: A Blueprint for Transforming 
Prevention, Care, Education, and Research. Washington, DC: National 
Academies Press, 2011.  

3. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: A maladaptive response of the 
nervous system to damage. Annu Rev Neurosci 2009; 32(1):1–32.  

4. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-
inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008; 
8(5):349–61.  

5. Serhan CN, Gotlinger K, Hong S, Arita M. Resolvins, docosatrienes, and 



neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered 
endogenous epimers: an overview of their protective roles in catabasis. 
Prostaglandins Other Lipid Mediat 2004; 73:155–72.  

6. Ji R-R, Xu Z-Z, Strichartz G, Serhan CN. Emerging roles of resolvins in the 
resolution of inflammation and pain. Trends Neurosci 2011; 34(11):599–609.  

7. Xu Z-Z, Zhang L, Liu T, Park JY, Berta T, Yang R, et al. Resolvins RvE1 and 
RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 
2010; 16(5):592–7.  

8. Huang L, Wang CF, Serhan CN, Strichartz G. Enduring prevention and transient 
reduction of postoperative pain by intrathecal resolvin D1. Pain 2011; 152:557-65.  

9. Park CK, Xu ZZ, Liu T, Lü N. Resolvin D2 Is a potent endogenous Inhibitor for 
transient receptor potential subtype V1/A1, inflammatory pain, and spinal cord 
synaptic plasticity in mice: distinct roles of resolvin D1, D2, and E1. J Neurosci 
2011; 31(50):18433-38.  

10. Park CK, Lü N, Xu ZZ, Liu T, Serhan CN, Ji RR. Resolving TRPV1- and TNF-α-
mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin 
D1. J Neurosci 2011; 31(42):15072–85.  

11. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. 
J Am Coll Nutr 2002; 21(6):495–505.  

12. Yurko-Mauro K. Cognitive and cardiovascular benefits of docosahexaenoic acid in 
aging and cognitive decline. Curr Alzheimer Res 2010; 7(3):190–6.  

13. Marchioli R, Schweiger C, Tavazzi L, Valagussa F. Efficacy of n-3 
polyunsaturated fatty acids after myocardial infarction: Results of GISSI-
Prevenzione trial. Lipids 2001; 36:S119–26.  

14. Kris-Etherton PM, Harris WS, Appel LJ. Omega-3 fatty acids and cardiovascular 
disease: new recommendations from the American Heart Association. Arterloscler 
Thromb Vasc Biol 2003; 23(2):151-2.  

15. Russo GL. Dietary n− 6 and n− 3 polyunsaturated fatty acids: from biochemistry 
to clinical implications in cardiovascular prevention. Biochem Pharmacol 2009; 
77(6):937–46.  

16. Shields SD, Eckert WA III, Basbaum AI. Spared nerve injury model of neuropathic 
pain in the mouse: a behavioral and anatomic analysis. J Pain 2003; 4(8):465–70.  

17. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent 
peripheral neuropathic pain. Pain 2000; 87(2):149–58.  

18. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol 



Toxicol 1980; 20(1):441–62.  

19. Rappaport BA, Cerny I, Sanhai WR. ACTION on the Prevention of Chronic Pain 
after Surgery. Anesthesiol 2010; 112(3):509–10.  

20. Xu ZZ, Liu XJ, Berta T, Park CK, Lue N, Serhan CN, Ji, RR. 
Neuroprotectin/Protectin D1 protects against neuropathic pain in mice after nerve 
trauma. Ann Neurol 2013; 74(3):490–5.  

21. Sungwhan FO, Pillai PS, Recchiuti A, Yang R, Serhan CN. Pro-resolving actions 
and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes 
and murine inflammation. J Clin Invest 2011; 121(2):569-81.  

22. Mogil JS. Animal models of pain: progress and challenges. Nat Rev Neurosci 
2009; 10(4):283–94.  

23. Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling 
in stroke, retinal degenerations, and Alzheimer's disease. J Lipid Res 2009; 
50:S400–5.  

24. Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T et al. Anti-
Inflammatory actions of neuroprotectin D1/protectin D1 and its natural 
stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 
2006; 176(3):1848-59  

25. Mas E, Croft KD, Zahra P, Barden A, Mori TA. Resolvins D1, D2, and other 
mediators of self-limited resolution of Inflammation in human blood following n-3 
fatty acid supplementation. Clin Chem 2012; 58(10):1476–84.  

26.     Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in 
cardiovascular disease and other chronic diseases. Exp Biol Med 2008; 
233(6):674–688. 

27. Ramsden CE, Faurot KR, Zamora D, Suchindran CM, MacIntosh BA, Gaylord S, 
et al. Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of 
chronic headaches: a randomized trial. Pain 2013; 154(11):2441–51.  

 

 

  

  



Figure 1. Essential fatty acids and neuropathic pain in traumatic amputees 

 

Figure 1: A-C: Plasma levels of the omega-3 fatty acids DHA and EPA are negatively 

correlated with neuropathic pain score in patients status-post traumatic amputation. 

Depicted are the summed or individual levels of the omega-3 polyunsaturated fatty 

acids (PUFAs) DHA and EPA in the plasma of 78 VIPER patients against the patients’ 

S-LANSS severity score. Linear regression revealed significant negative correlation 

(p<0.05) between plasma omega-3 PUFA levels and pain score.  D: There was also a 

negative correlation between the ratio of omega-3 to omega-6 PUFAs and neuropathic 

pain score. The essential fatty acids levels are relative: they represent raw area counts 

from the LC/MS analyses that have been normalized such that the cohort has a median 

of 1.  



Figure 2. Oral DHA/EPA supplementation reduces mechanical allodynia 

 

Figure 2: Perioperative supplementation with DHA and EPA attenuates mechanical 

allodynia following spared-nerve injury. Paw withdrawal thresholds are presented as 

mean percent of baseline ± SEM, from baseline (POD0) through post-operative day 

(POD) 21. Lower thresholds represent mechanical allodynia. Mice treated with DHA and 

EPA (DHA/EPA, DHA/EPA + ASA) developed significantly less mechanical allodynia 

(50-60%) at the majority of time points compared to the spared-nerve injury control 

group (SNI).  * represents significant difference of treatment group from SNI (p<0.05).   

 

 

 

 

 



Figure 3. Perioperative supplementation with DHA/EPA may increase plasma PLRMs 

 

Figure 3: Perioperative supplementation with DHA, EPA, and aspirin may increase 

endogenous levels of neuroprotectins. A:  Plasma levels of the neuroprotectin PDX 

trended towards increase in the DHA/EPA + ASA group compared to SNI controls on 

POD12 (+116.4, p=0.07). B: Plasma levels of neuroprotectin D1 (NPD1) trended 

towards an increase in the DHA/EPA + ASA group compared to SNI controls on POD12 

(+90.3, p=0.11)  



SUPPLEMENTARY MATERIAL 
 
Statistical analysis 

The areas under the “paw withdrawal threshold versus time” curve (AUC) were 

calculated using the trapezoid rule in Microsoft Excel and compared using a Kruskal-

Wallis test with ad hoc multiplicity-corrected Dunn tests in Prism. Areas under curves 

have been used in clinical trials of pain as a summative measure of total pain relief and 

are customarily reported as percent difference from maximum AUC (28,29). For this 

experiment, AUC analysis is reported as mean percent of baseline paw withdrawal 

threshold AUC with SEM. It is thus used here as a summative measure of hindpaw 

sensitivity: lower AUCs correspond to increased mechanical allodynia, while those 

above 100% indicate lower sensitivity compared to baseline.   

As another means of comparing the pain behavior of the different groups over 

time, centered quadratic polynomial regression analysis was performed on the 

behavioral data. Comparisons of best-fits were made using the Extra Sum of Squares F 

Test in a step-wise fashion: if comparison showed that the groups had significantly 

different fits, the most dissimilar group was removed from analysis until no significant 

difference in best fit was found between groups.  

Results 

Our AUC analysis showed that treatment with DHA and EPA reduced total 

mechanical allodynia over the course of this experiment (Figure 1B). Compared to the 

control SNI mice, the DHA/EPA and DHA/EPA and aspirin groups’ percent baseline 

paw withdrawal thresholds were increased by 47.5% and 40.3%, respectively (p<0.05). 

Again, there was no difference between the two treatment groups. This indicates that 



over the course of the experiment, those mice treated with DHA and EPA cumulatively 

experienced less mechanical allodynia after nerve injury compared to controls.  

To better characterize and compare the pain behavior of the groups over time, 

we performed a centered quadratic polynomial regression analysis (Figures 1C-E). We 

found that a single model fit the data from the two treatment groups, and that this model 

differed significantly from the best-fit models for the sham and SNI control groups 

(p<0.0001). The fits for the treatment and sham models were poor (r2=0.062 and 0.014, 

respectively), but the this regression analysis nevertheless illustrates that the 

mechanical allodynia that developed in the treatment groups was less robust and 

progressed differently following nerve injury than in controls.   
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Supplemental Figures  



 

Supplemental figure captions: 

 

A:  AUC analysis: Area under the “paw withdrawal threshold versus time” curves 

(AUC) for the different groups are shown as median (+IQR) percent of baseline 

PWT; larger values represent higher PWTs and thus less mechanical allodynia over 

the course of the experiment. Compared to the control SNI mice, the DHA/EPA and 

DHA/EPA with aspirin groups’ percent baseline paw withdrawal thresholds were 

increased by 47.5% and 40.3%, respectively (p<0.05). 

B-D:  Quadratic regression analysis: Comparisons of best-fits were made using the 

Extra Sum of Squares F Test in a step-wise fashion: if comparison showed that the 

groups had significantly different fits, the most dissimilar group was removed from 

analysis until no significant difference in best fit was found between groups. A single 

model fit the data from the two treatment groups, and this model differed significantly 

from the best-fit models for the sham and SNI control groups (p<0.0001). Figure C 

shows the initial fits for all groups; figure D shows the final fit for the two treatment 

groups. Figure E provides the model parameters.  
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 CURRENT
OPINION Epigenetics of chronic pain after thoracic surgery

Matthew Maucka, Thomas Van de Venb, and Andrew D. Shawb

Purpose of review

Chronic pain after surgery is a major public health problem and a major concern for perioperative
physicians. Thoracic surgery presents a unique challenge, as thoracotomy is among the highest risk
surgeries to develop persistent postsurgical pain. The purpose of this review is to discuss the relevance of
research in pain epigenetics to patients with persistent pain after thoracic surgery.

Recent findings

Recent advances have linked chronic pain states to genetic and epigenetic changes. Progress in our
understanding of chronic pain has highlighted the importance of immune modulation of pain. It is possible
that epigenetic changes driving chronic pain occur in the perioperative setting via histone modification and
DNA methylation.

Summary

The transition from acute to chronic pain after thoracic surgery may be mediated by epigenetics. Here, we
discuss epigenetic modifications that have been discovered in animal models of chronic pain that may
predispose patients to persistent neuropathic pain after thoracic surgery.

Keywords

chronic pain, epigenetics, thoracic surgery

INTRODUCTION

Chronic postsurgical pain is a major concern of sur-
geons and perioperative physicians as it represents
the most common complication after thoracotomy
[1,2]. Although nearly all patients have some degree
of acute pain after surgery, 30–40% develop persist-
ent chronic pain [3–6]. It is currently unclear what
specificmodificationsoccur in neural circuits respon-
sible for nociception and what changes occur
in biochemical pathways that increase the risk of
developing persistent pain after surgery. Persistent
postoperative pain after thoracic surgery is a key
public health issue that needs to be addressed so that
the prevention of acute and chronic pain may be
better targeted [2]. Acute intercostal nerve injury and
surgical tissue trauma may be the cause of chronic
pain after thoracic surgery; however, there does not
appear to be a strong correlation between presence
of nerve injury and the development of chronic
postsurgical pain [2,7].

There appear to be several important risk factors
for developing persistent pain after surgery. One
important predictor of persistent postoperative
pain is presence of severe postoperative acute pain
[8,9]. Interestingly, based on recent data, the pres-
ence of preoperative chronic pain does not necess-
arily predict severe postoperative pain [10]. Early

postoperative neuropathic pain is a risk factor [8].
Preoperative anxiety is an important risk factor for
developing persistent postsurgical pain and may be
a risk factor that should be optimized prior to
surgery [3,11]. Female sex and increasing age also
appear to be risk factors in developing chronic post-
operative pain [3].

One important question that needs to be
addressed is whether there is a difference in the
incidence of chronic pain after video-assisted thor-
acoscopic surgery (VATS) or thoracotomy. It appears
that the risk of developing chronic neuropathic pain
after surgery is not related to mode of thoracic
surgery whether VATS or thoracotomy [8,12]. There-
fore, all patients presenting for thoracic surgery are
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at high risk of developing significant long-term
morbidity from pain after surgery.

Recent advances in chronic pain medicine have
linked innate immunity to the development and
maintenance of chronic pain syndromes [13

&

].
Because of acute local and systemic inflammation
that occurs after surgery, it is possible that the
inflammatory environment postoperatively con-
tributes to the generation of long-term chronic pain.
In support of this hypothesis, patients undergoing
lung transplantation surgery requiring perioperative
and postoperative immune suppression have a
lower incidence of developing chronic pain [14].

The root cause of the development of chronic
pain after surgery, considering the aforementioned
risk factors, is likely multifactorial with influences
from both genetics (nature) and the environment
(nurture). Epigenetics is a means by which the
environment can alter the expression of genes
[15]. The surgical stimulus that incites chronic pain
may change and alter gene expression by epigenetic
mechanisms. In this review, we will discuss the
interplay between the environment and gene
expression and focus on the key epigenetic targets
as they relate to the development of chronic pain.
There is promise from preclinical animal models in
blocking epigenetic modification during acute pain
that may prevent the progression to chronic post-
surgical pain [16,17

&&

,18].

ENVIRONMENT, GENETICS AND PAIN

The role of genetics in pain phenotypes is undeni-
able. Genetic polymorphisms in a single gene can
have such a profound effect on the sensation of pain
that they can render individuals either insensate to
pain or exquisitely sensitive to nonpainful stimuli.
The gene SCN9A encodes a sodium channel
(NaV1.7), and if mutated can cause either a gain of
function resulting in erythermalgia or loss of func-
tion resulting in the inability to sense pain [19–22].
The authors of this remarkable finding call the
inability to sense pain as a result of a polymorphic

SCN9A gene ‘channelopathy-associated insensitivity
to pain’ [20]. One patient cited in this manuscript,
was found street performing including walking
barefoot over hot coals and placing sharp knives
through his skin [20]. This study demonstrates the
key role of genetics in nociception.

In addition to purely genetic causes of altered
nociception, environmental triggers of chronic pain
may predispose to central sensitization. The role of
environment in disease is often examined using
twin studies. The question of whether identical twins
both have an equivalent predisposition to the
chronic pain remains incompletely answered; how-
ever, there are significant environmental factors,
such as smoking, that correlate with chronic pain.
These environmental factors possibly act though
epigenetic mechanisms [23

&

,24]. The remarkable
plasticity of gene expression influenced by the
environment may account for the variability in
susceptibility for chronic pain among individuals
sharing the same genetic predisposition. The aim
of future studies should be on elucidating the modi-
fiable environmental factors that may reduce the risk
of developing chronic pain after surgery.

PAIN EPIGENETICS

Epigenetic mechanisms involve changing the like-
lihood of gene expression by altering the chemical
or physical structure of DNA [15]. Structural and
chemical changes in DNA may be influenced by
experience (acute pain and perioperative inflam-
mation) potentially predisposing patients to
chronic pain after nerve injury because of surgical
insult [18,25,26

&&

]. Epigenetic modifications are an
attractive target for therapeutics to block the devel-
opment of chronic pain after surgery, as they are
remarkably reversible and heavily influenced by
environment.

One demonstration of how environmental
influences can induce changes in gene expression
through epigenetic modification came from the
honeybee. It was discovered that feeding genetically
identical larvae royal jelly beyond 3 days induces
differential methylation in a gene that encodes a
DNA methyltransferase (DNMT3) important in
global gene expression [27]. The decrease in meth-
ylation of this gene, which occurs via exposure to
the royal jelly beyond 3 days, results in the gener-
ation of a queen phenotype [27,28]. Remarkably
demonstrated in the bee, feeding a nutritionally
unique diet can cause epigenetic modification that
profoundly influences phenotype. In contrast to the
royal jelly, the inflammatory, stressful and trau-
matic nature of necessary surgical intervention
may induce deleterious methylation changes that

KEY POINTS

� Chronic pain after thoracic surgery is a major public
health concern.

� Epigenetic modifications may have a role in the
development of chronic pain after surgery.

� Preclinical studies suggest that targeting epigenetic
mechanisms may prevent the development of chronic
pain after nerve injury.

Thoracic anesthesia
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result in a predisposition to develop a chronic pain
after surgery. Possible epigenetic changes that occur
in the perioperative period could be the driving
force behind the development of persistent post-
operative pain [18,29].

Epigenetic DNA changes occur via two major
mechanisms: histone modification and DNA meth-
ylation [15]. The data relating to chronic pain via
these two major mechanisms will be reviewed here.

HISTONE MODIFICATIONS AND THEIR
ROLE IN THE EPIGENETICS OF PAIN

Scaffold proteins encircled by loops of DNA in the
nucleosome are called histones. Histone proteins
have protruding N-terminal tails that contain
positively charged lysine residues that are sites for
acetylation [30]. Histone acetylases (HAT) and
deacetylases (HDAC) transfer or remove an acetyl
group (from acetyl CoA) to and from positively
charged lysine residues on histone tails that neutral-
ize the charge. The positive charge on histone lysine
residues attracts negatively charged DNA. Neutraliz-
ing the charge with an acetyl group weakens
the binding of DNA to its histone scaffold [30].
Dissociation of DNA from histones via HATs rela-
tively increases gene expression whereas HDAC
exposes the positively charged lysine residues
enhancing DNA attraction to histones and decreas-
ing the likelihood of transcription. In addition to
acetylation, histones may also be modified by meth-
ylation, phosphorylation, deamination and other
mechanisms [30].

It has been shown that expression of HDAC is
downregulated following spared nerve injury in
animal models of neuropathic pain [31

&

]. This
indicates (theoretically) that global gene expression
is facilitated by HDAC in neuropathic pain models.
In addition to this finding, a molecular mechanism
for the suppression of gad2, a gene that encodes
glutamic acid decarboxylase 65 important in pre-
synaptic g-aminobutyric acid (GABA) synthesis,
involves HDAC [32]. In this study, Zhang et al.
[32] demonstrated that using HDAC inhibitors
and inducing a state of hyperacetylation caused
analgesia in animals with inflammatory pain by
increasing GAD65 activity. This exciting study
suggests an epigenetic approach to treat and prevent
chronic pain may prove successful.

HDAC inhibitors hold promise as an epigenetic
treatment for the prevention of chronic pain in
animal models. Given as an intrathecal infusion
prior to nerve injury in rats, HDAC inhibitors cause
reduced hypersensitivity relative to untreated con-
trols [17

&&

]. This effect was not present in animals
treated with HDAC inhibitors at the same time as

nerve injury. This suggests that histone deacetyla-
tion during nerve injury is responsible for mechan-
ical hypersensitivity and is reversible with HDAC
inhibitor pretreatment. This preclinical study
suggests promise in preventing nerve injury related
histone modifications with HDAC inhibitors [17

&&

].
This is an attractive approach when the risk of nerve
injury and persistent postsurgical pain is high as in
patients undergoing thoracic surgery.

Another recent study showed that expression of
metabotropic glutamate receptor 2 (mGlu2) is
regulated by histone acetylation in the dorsal root
ganglion and mediates pain phenotype [33]. In
order to achieve full transcriptional activity at the
mGlu2 gene, deacetylation at the gene encoding
nuclear factor-kB transcription factor p65/RelA
must occur. It has been recently demonstrated that
the treatment with histone deacetylase inhibitors
causes analgesia and also increased expression of
mGlu2 in the DRG without affecting other meta-
botropic glutamate receptors [33]. This is a key
finding linking histone acetylation to nociceptive
phenotype. This exciting preclinical discovery
suggests that therapeutic targets for treating and
preventing chronic pain may be histone deacetylase
inhibitors or mGlu2 agonists.

There is a strong link between chronic pain and
inflammatory reaction emerging in the literature
[13

&

]. There are many pathways of interaction
between the nervous system and innate immunity.
One of those pathways has a possible epigenetic
linkage [34

&

]. Mice treated with partial sciatic nerve
ligation to induce chronic pain had an increase in
histone H3 acetylation in the promoter regions of
the genes encoding macrophage inflammatory
protein 2 (MIP-2) and C-X-C chemokine receptor 2
(CXCR2). This increased the recruitment and
infiltration of inflammatory cells [via increased sig-
naling between the mouse homolog of IL-8 (MIP-2)
and its receptor CXCR2] [34

&

]. When treated with an
inhibitor for HAT (preventing histone hyperacety-
lation), mice had a reduction in neuroinflammation
and pain. This suggests a role for epigenetic modi-
fication in pain via modulating neuroinflammation
[34

&

]. This also supports the growing link between
chronic pain and inflammation.

DNA METHYLATION IN PAIN EPIGENETICS

DNA methylation is an epigenetic process by which
cytosine residues are methylated by DNMTs in the
CG dinucleotide sequence [35,36]. The degree of
DNA methylation is inversely related to gene expres-
sion as the bulky methyl groups interfere with gene
transcription [37]. It has emerged that covalent
methylation of DNA cytosine residues is an

Epigenetics of post-thoracotomy pain Mauck et al.
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important mechanism that regulates chronic pain
states and may be another potential epigenetic
target to treat and prevent chronic pain [37].

In a recent study by Qi et al., it was shown that
the cystathionine-b-synthase (CBS) expression is
epigenetically regulated via DNA methylation in
the rat. CBS synthesizes hydrogen sulfide, which
is involved in nociceptive signaling. In this study,
mice exposed to complete Freunds adjuvant (CFA)
had increased mechanical hypersensitivity and elev-
ated CBS expression was found in the dorsal root
ganglion [38

&

]. Using methylation-specific PCR and
bisulfite sequencing, it was found that CFA-treated
animals had less cytosine methylation in the cbs
gene relative to control. This suggests that DNA
methylation can influence the development of
mechanical hypersensitivity in an inflammatory
pain model. This result further suggests that DNA
methylation may be a potential target for drug
development in the treatment and or prevention
of chronic pain [38

&

].
In another study in rats, inhibiting DNA meth-

ylation with intrathecal 5-azacytidine attenuates
the development of thermal hyperalgesia and mech-
anical allodynia in animals treated with a chronic
constriction injury [39]. This suggests that blocking
DNMT with 5-azacytidine reduces pain behavior in
rats with induced nerve injury. Based on this pre-
clinical study, DNMT inhibitors appear to be
another promising epigenetically active therapy to
prevent chronic pain after surgery [39].

There appears to be a significant supraspinal
component to chronic pain and persistent post-
surgical pain. Exciting work in mice has demon-
strated that chronic pain is associated with global
DNA methylation changes in the prefrontal cortex
[26

&&

]. It is well known that the prefrontal cortex is
important in modulating chronic pain as well as
facilitating depression and anxiety. It was shown
that after spared nerve injury, mice had significantly
reduced global methylation in the prefrontal cortex
and the amygdala using a luminometric methyl-
ation assay. Furthermore, this group showed a
strong correlation between severity of the behavior
and percentage of global methylation, strengthen-
ing the link between nerve injury and induced
methylation changes in the cortex. This study
reinforces that nerve injury after surgery may induce
DNA methylation changes that, if inhibited, may
prevent the development and progression to per-
sistent pain after surgery.

CONCLUSION

This review is focused on pain epigenetics as a poten-
tial target for preventing persistent postoperative

pain. Epigenetics is an emerging field in pain
medicine as primary evidence is accumulating in
preclinical animal models that epigenetic changes
occur in chronic pain phenotypes. The interaction
between the environment and genes via epigenetics
is one that is important in the perioperative setting.
Thoracic surgery patients undergoing VATS or thor-
acotomy have a high risk of developing persistent
postsurgical pain. It is possible that surgical trauma
and nerve injury triggers a cascade of epigenetic
changes that results in altered gene expression and
increased risk for developing chronic pain. Altering
epigenetic processes with inhibitors of histone
modification or DNA methylation may be an attrac-
tive target for preventing changes that occur in the
perioperative period.
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Abstract

Objective. The objective of this study was to
review the epigenetic modifications involved in the
transition from acute to chronic pain and to identify
potential targets for the development of novel,
individualized pain therapeutics.

Background. Epigenetics is the study of heritable
modifications in gene expression and phenotype
that do not require a change in genetic sequence to
manifest their effects. Environmental toxins, medi-
cations, diet, and psychological stresses can alter
epigenetic processes such as DNA methylation,
histone acetylation, and RNA interference. As epige-
netic modifications potentially play an important
role in inflammatory cytokine metabolism, steroid
responsiveness, and opioid sensitivity, they are
likely key factors in the development of chronic
pain. Although our knowledge of the human genetic
code and disease-associated polymorphisms has
grown significantly in the past decade, we have not

yet been able to elucidate the mechanisms that lead
to the development of persistent pain after nerve
injury or surgery.

Design. This is a focused literature review of epige-
netic science and its relationship to chronic pain.

Results. Significant laboratory and clinical data
support the notion that epigenetic modifications are
affected by the environment and lead to differential
gene expression. Similar to mechanisms involved
in the development of cancer, neurodegenerative
disease, and inflammatory disorders, the literature
endorses an important potential role for epigenetics
in chronic pain.

Conclusions. Epigenetic analysis may identify
mechanisms critical to the development of chronic
pain after injury, and may provide new pathways and
target mechanisms for future drug development and
individualized medicine.

Key Words. Epigenetics; Pain; DNA Methylation;
Histone Deacetylase Inhibitors; RNA Interference

Introduction

In recent years, we have developed a better understand-
ing of the cellular mechanisms that link inflammation,
peripheral sensitization, and pain [1]. In addition, we have
learned more about the human genetic code [2] and
mutations (particularly single nucleotide polymorphisms
[SNPs] and copy number variations) that are associated
with specific chronic pain syndromes [3,4]. These physi-
ologic and genetic advances, however, do not fully explain
why one patient develops chronic pain following an injury,
and another patient does not. Despite recent improve-
ments in techniques for acute pain management, 30–50%
of patients still develop chronic pain following surgeries
such as amputation, thoracotomy, hernia repair, and
mastectomy [5].

It is also notable that monozygotic twins may exhibit sig-
nificantly different inflammatory and chronic pain pheno-
types [6–8], indicating that the etiological basis of these
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disorders is not due simply to differences in genetic
sequence. We now appreciate that response to injury is
determined by complex interactions between the genome
and the environment. These alterations might well be epi-
genetic in nature, i.e., heritable modifications that are not
intrinsic to the genetic code, but that affect gene expres-
sion in a tissue-specific manner, resulting in an observable
phenotype (Figure 1) [9].

Epigenetic processes are responsible for cellular differen-
tiation during embryogenesis and are critical for normal
development [10]. These processes also play an impor-
tant role in memory formation, as correlations between
hippocampal activity, DNA methylation, and histone phos-
phorylation in the brain have been found [11,12]. The
spinal cord sensitization seen in painful conditions shares
common mechanisms with the neural plasticity of memory
formation [13], and it is likely that similar epigenetic
mechanisms regulate both of these neural processes.

Multiple examples of the importance of epigenetic influ-
ences in development are found throughout nature. One
of the best-described cases of environmental influence on
gene expression involves the control of bee development
by ingesting royal jelly. This nutritive substance induces
changes in juvenile bee DNA methylation patterns and
leads to development of the bee’s phenotype to become
a queen rather than a worker [14]. The concepts of epi-
genetic heritability and stability have also been described
in plants [15] and mammals [16]. For instance, high-fat
diets fed to paternal rats induce functional changes in
b-islet cells of female offspring [16]. Similar modifications
in DNA methylation were noted in the fathers and

offspring, suggesting the nongenetic heritability of this
metabolic disorder.

Nondevelopmental epigenetic modifications are also trig-
gered by environment, nutrition, and stress [17–19], and
may play a role in the onset of chronic pain following nerve
injury [20,21]. We have long appreciated the importance of
the psychosocial environment to the incidence and sever-
ity of chronic pain [22–27], and mounting evidence sug-
gests that epigenetic mechanisms supply the link between
disease expression and environment [18,28]. Nongenetic
factors are important in the development of cancer
[29,30], neurologic disorders [31], and painful disorders
such as bladder pain syndromes [7], myofascial pain [32],
and temporomandibular joint pain [8]. Twin disease
models of neurodegenerative conditions [33], inflamma-
tory periodontal disease [34], and autoimmune disease
[35] demonstrate variable disease expression depending
on the DNA methylation pattern [6].

Environmental factors alter gene expression and pheno-
type for painful disorders by inducing epigenetic modifica-
tions such as histone acetylation, DNA methylation, and
RNA interference (RNAi) [36–38]. Following injury, expres-
sion of transcription factors such as nuclear factor-kappa
B (NF-kB) is increased [39], sodium channels in the injured
axon are upregulated [40], m-opioid receptors in the dorsal
root ganglion are downregulated [41,42], substance P
expression is altered [43], and the dorsal horn of the spinal
cord is structurally reorganized through axonal sprouting
[44]. As with DNA variation, epigenetic modifications may
be inherited and may be propagated over multiple cell
divisions; however, they are flexible enough to respond to

Figure 1 Epigenome and chronic pain. Twin A and Twin B demonstrate similar “epigenomes” at birth with
few (if any) differences in methylation and acetylation patterns. Environmental factors throughout develop-
ment affect histone acetylation patterns and cytosine methylation patterns, resulting in phenotypic differences
by adulthood. With surgery or nerve injury, these epigenetic differences may result in differing risks of chronic
pain.
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modifying influences. This concept may in part explain
how we interact with our environment at the (epi)genomic
level, and is potentially of great importance in understand-
ing the relationship between gene expression and
complex diseases such as chronic pain.

Genetics, Epigenetics, and Pain

Over the past several decades, much has been written
about the association of genetic polymorphisms and the
development of chronic pain [45,46]. It was believed that,
through knowledge of genetic variation, we could develop
the foundation for individualized medicine that optimizes
therapy for each patient based on one’s specific genetic
sequence [47]. Expectations for personalized medicine
were high after completion of the human genome project
[2], but thus far, our ability to use the genetic code to
prevent or improve chronic pain has been somewhat
limited [48]. It is the heretofore unquantifiable environmen-
tal effect that has been one of the limitations of genetic
studies [45].

Multiple candidate gene association studies have been
used for the investigation of pain, but have been limited by
their focus on genomic regions where the pathophysiol-
ogy is thought to be reasonably well understood. They are
not designed to analyze painful conditions that result from
interactions of multiple genes [49]. A few candidate gene
polymorphisms have been linked to pain susceptibility,
including catechol-O-methyltranferase (COMT). This gene
modulates nociceptive and inflammatory pain and has
been linked to temporomandibular joint pain syndromes
[50]. Even studies of COMT, however, have demonstrated
inconsistencies. Some investigators have found an asso-
ciation between a COMT SNP val158met [4,50] with
increasing pain responses, while others failed to replicate
these findings [51,52].

The SCN9A gene has also been studied as a marker for
pain sensitivity. Mutations in this gene, which codes for
the alpha-subunit of a voltage-gated sodium channel
(Nav1.7), are known to result in alterations of pain per-
ception [53], and have been noted in rare pain disorders
such as erythromelalgia and paroxysmal extreme pain
disorder [54,55]. SCN9A polymorphisms have also been
described in individuals who are insensitive to pain
[3,56]. Although the implications of the SCN9A gene
polymorphism are clear, clinical applications of this
knowledge remain limited [47].

Genome-wide association studies (GWAS) have been
used in an attempt to overcome some of the limitations of
candidate gene analysis. These studies tell us where the
genetic variation exists, but do not always fully explain the
underlying biology. Furthermore, although GWAS have
identified thousands of genetic variations in complex dis-
eases, most of the variants confer only a modest risk with
an odds ratio for disease of <1.5. These genetic variants,
therefore, account for only a small fraction of the popula-
tion attributable risk for heritable complex traits [57,58],
implying a strong nongenetic predisposition to disease.

GWAS directed toward painful conditions remain limited in
number [45].

Specific Epigenetic Modifications

Histone Modifications

Histones octamers and their surrounding DNA form a
nucleosome, the fundamental building block of chromatin
(Figure 2A). The N-terminal histone tails may be modified
by more than 100 different posttranslational processes
including acetylation, phosphorylation, and methylation
(Figure 2B). Most of the histone complex is inaccessible,
but the N-terminal tail protrudes from the nucleosome
and is therefore subject to additions that change the
three-dimensional chromatin structure and subsequent
gene expression [59,60]. One of the more common modi-
fications involves acetylation. Histone acetyl transferases
add acetyl groups, altering the histone protein structure.
This change prevents the chromatin from becoming more
compact, allowing transcription factors to bind more
easily. This state of increased acetylation and “permissive
chromatin” generally increases transcription activity and
RNA production from that genetic sequence, especially
when located in gene promoter regions [61,62]. Con-
versely, histone deacetylases (HDACs) remove acetyl
groups from histones, generally suppressing gene
expression. In concert, these activities serve important
regulatory functions.

DNA Methylation

Another ubiquitous epigenetic modification involves
methylation of DNA cytosine nucleotides. In this process,
DNA methyltransferase enzymes (DNMT1, DNMT3A,
and DNMT3B) add a methyl group to the 5-carbon
of the cytosine pyrimidine ring, converting it to 5-
methylcytosine. This methylation generally silences gene
expression either by preventing the binding of transcrip-
tion factors [63,64], or by attracting methylated DNA-
binding proteins such as MeCP2 that themselves
repress transcription (Figure 2C) [65,66]. The methylation
process is vital for normal embryonic development and
growth [67], and these methylation patterns are propa-
gated during cell division.

The degree of cytosine methylation tends to mirror the
degree of tissue specialization. For instance, DNA in neu-
rologic tissue is highly methylated, while sperm DNA is
relatively unmethylated [68]. More recent research has
focused on the regulatory importance of cytosine methy-
lation in promoter regions where methylation may silence
a previously active gene sequence in the process of tissue
specialization [69]. In addition to the cytosine nucleotides
dispersed throughout the genome, there are regions par-
ticularly rich in cytosine-phosphate-guanine (CpG) linear
sequences, described as “CpG islands” [70]. These “CpG
islands” are found in promoter regions or first exons of
approximately 60% of human genes, and are often unm-
ethylated during development, allowing a transcriptionally
active state [71]. Although promoter site methylation may
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silence gene expression during development, genes may
still be reactivated even in specialized neurologic tissues
[72,73]. This potentially modifiable plasticity of neural
tissue methylation may hold promise for reversing the
neurologic molecular remodeling that occurs during the
transition from acute to chronic pain.

Several disease states, including cancer, schizophrenia,
and opioid addiction, are associated with DNA methyla-
tion abnormalities [30,74–76]. In cancer, these altered
methylation patterns may lead to tumor growth by down-
regulating tumor suppressor genes [30]. Methylated gene
domains demonstrate not only stability, but also heritability
[70]. The epigenetic influence across generations is dem-
onstrated in rodent studies in which spermatogenesis is
suppressed, and methylation patterns are altered for
several generations after using the antiandrogenic com-
pound vinclozolin during embryonic development [77].

Noncoding RNA

Gene expression can also be controlled by RNAi that
involves endogenous molecules such as small interfering
RNA (siRNA), microRNA (miRNA), and short hairpin RNA

(shRNA). These small noncoding RNA molecules can
silence gene expression by binding to mRNA and inducing
subsequent degradation of the direct gene product
(Figure 2D) [78]. These molecules can self-propagate
through cell division and epigenetically transmit regulatory
information across generations [79]. Interfering RNAs
carry great therapeutic promise and have been used in
animal trials for chronic neuropathic pain [80] and neuro-
degenerative disease [81], as well as in human clinical
trials for cancer [82].

Our understanding of epigenetic processes has increased
dramatically over the past decade. Efforts are currently
underway, through such groups as the International
Human Epigenome Consortium, to sequence and create
maps of cell-specific DNA methylation and histone
modifications [83].

Techniques of Epigenetic Analysis

There are many challenges in defining the specific epige-
netic changes that lead to a particular disease state. Many
earlier epigenomic studies have been limited by either
inadequate genome survey or small sample size, and the

Figure 2 Epigenetic mechanisms. (A) DNA wraps around histone octamers to form a nucleosome, the
fundamental building block of chromatin. (B) Histone proteins may be modified through several processes,
including acetylation. The addition of an acetyl group to histone tails generally opens the chromatin structure
and facilitates transcription factor binding, enhancing gene expression. (C) Methylation of cytosine nucle-
otides in C-G rich sequences (“CG islands”) prevents the binding of transcription factors and generally
silences gene expression. These CG islands are often found near promoter regions and serve a significant
role in gene regulation. (D) Posttranscriptional regulatory mechanisms include short hairpin RNA (shRNA),
small interfering RNA (siRNA), and micro RNA (miRNA) that bind RNA and induce their degradation.
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relationship in many diseases between phenotypic expres-
sion and epigenomic variation remains unclear [84]. It is
unlikely that single gene epigenetic modification will explain
the complex pain phenotypes seen after injury or surgery.
Epigenome-wide association studies have been proposed
as a possible solution to improve our understanding of the
links between disease state and epigenetic modifications.
Comprehensive epigenomic maps are currently being
developed with promising future applications [84].

Another challenge with epigenetic studies and disease
variation is the need for enhanced comprehension of the
distinction between cause and consequence [84]. To fully
understand if a particular biomarker represents the cause
of a disease or the effect from a disease, we will need to
perform analyses at multiple time points before and
after the development of a disease. This initiative has
already begun with the establishment of the U.S. National
Institutes of Health Roadmap Epigenomics Mapping
Consortium [85].

Regardless of the relationship between biomarkers and
causation, however, epigenetic modifications throughout
the course of a chronic disease can be used as biomar-
kers. In particular, DNA methylation is well suited as a
potential predictive biomarker secondary to its relative
chemical stability. Reliable biomarkers are critical if we are
to develop personalized epigenetic interventions. Candi-
date markers would need to be found in an accessible
space (blood), but still reflect the neurobiological process
occurring at the proximal tissue (spinal cord/brain).
Whether the circulating leukocyte epigenome can report
on more inaccessible tissues (such as central nervous
system [CNS]) is uncertain, but there is growing evidence
that methylation patterns tend to be similar between proxi-
mal tissue and more easily accessible circulating blood
cells. For example, it was recently shown that the pattern
of CpG island methylation in the promoter region of the
prodynorphin gene in both human brain tissue collected
postmortem and matched peripheral blood mononuclear
cells is virtually identical [86].

The burgeoning field of epigenetics is using novel tech-
nologies to measure these heritable, yet modifiable, pat-
terns of transcriptional regulation. DNA methylation is
analyzed through bisulfite sequencing that allows the epi-
genetic information present in the form of cytosine methy-
lation to be retained during amplification (Figure 3B).
Traditional molecular analysis of specific gene loci relies on
the ability to amplify the DNA of interest using cloning and
polymerase chain reaction (PCR) techniques. If this ampli-
fication is done, however, without somehow immortalizing
the methylation status of a particular cytosine, that infor-
mation will be lost after the first PCR cycle. To solve this
problem, unmethylated cytosines can be modified through
the bisulfite reaction, deaminating them to uracil. Methy-
lated cytosines, however, are not deaminated by bisulfite,
remaining unchanged during subsequent amplification.
Probes can then be designed to determine whether a
specific promoter region has retained a particular cytosine
(previously methylated) or whether this cytosine has been

converted to uracil (previously unmethylated). The methy-
lation status of the promoter can then be determined
using the cytosine/uracil ratio.

Histone protein modifications have also been studied
since 1988 through a process of chromatin immunopre-
cipitation (ChIP) (Figure 3A) [87]. This process involves
fragmentation of the chromatin and immunoprecipitation
using an antibody to the protein or modification of interest.
For example, an antibody to a specific acetylation site on
histone H3 is used to precipitate all DNA associated with
that particular acetylated histone. Following immunopre-
cipitation, the DNA fragments are then typically identified
through microarray hybridization. More recently, “next
generation sequencing” (NGS) technologies have been
combined with ChIP, providing a high resolution, genome-
wide analysis of histone modification. Whereas microarray
techniques analyze regions of the genome previously
identified, NGS carries the possibility of capturing all the
DNA fragments isolated by immunoprecipitation [71].
These NGS technologies will continue to expand our
understanding of epigenetic changes and the chromatin
regulatory state throughout the genome.

The Role of Epigenetic Modification in the
Transition from Acute to Chronic Pain

Prevention of chronic pain after injury has been the focus
of numerous previous trials involving interventions such as
multimodal analgesics and catheter-based local anes-
thetic infusions [88–90]. Although these techniques are
successful in reducing the burden of acute pain [91], they
have not succeeded in dramatically reducing the inci-
dence of chronic post-injury or post-surgical pain [92–94].
The shortcomings of our preventive strategies are most
pronounced following surgeries that have a higher risk for
developing chronic pain such as amputation, thorac-
otomy, hernia repair, coronary artery bypass, and mastec-
tomy [5,95,96].

Our therapeutic limitations may be partially due to our
inability to prevent the epigenetic changes that occur fol-
lowing injury and surgery. A patient’s gene expression
profile changes rapidly in the post-injury period [97], with
over 1,000 genes activated in the dorsal root ganglion
alone after nerve injury [98]. There is significant evidence
for epigenetic control of this gene activation in the transi-
tion from acute to chronic pain. First, immunologic
response and inflammatory cytokine expression are under
epigenetic control [99,100]. Second, glucocorticoid
receptor (GR) function, which affects pain sensitivity,
inflammation, and the development of autoimmune
disease, is modulated both through posttranslational
mechanisms and DNA methylation [101–103]. Third,
genes such as glutamic acid decarboxylase 65 that code
for pain regulatory enzymes in the CNS are known to be
hypoacetylated and downregulated in inflammatory and
nerve injury pain states [104]. Finally, epigenetic modifica-
tions are involved in opioid receptor regulation and func-
tion, with implications for endogenous pain modulation
systems and pain severity [63,76].
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The important link between epigenetic regulation and pain
is also supported by studies involving intervertebral disc
degeneration and chronic low back pain. Tajerian et al.
found that DNA methylation of an extracellular matrix
protein, secreted protein, acidic, rich in cysteine, is linked
to accelerated disc degeneration both in humans and in
animal models of this disease [38]. The correlation
between pain and epigenetics is additionally observed in a
study of DNA methylation in human cancer where endot-
helin receptor type B (EDNRB) is heavily methylated and
downregulated in painful squamous cell carcinoma (SCC)
lesions [105]. The investigators noted similar findings in
their mouse model of SCC, and were able to improve
mechanical allodynia when EDNRB transcription was
virally augmented [105]. These human and animal studies
strongly support a role for gene methylation in regulating
the pain experience.

Cytokines

Injury and autoimmune disease are characterized by
excessive cytokine production, and anti-cytokine thera-

pies have been successfully used to treat painful condi-
tions such as ankylosing spondylitis [106,107] and
neuropathy [108,109]. The link between cytokine expres-
sion and pain is supported by the demonstration of T-cell
infiltration and inflammatory interleukin (IL) release in
animal models of neuropathic pain [110]. Furthermore,
interventions that modify the immune response to injury
also reduce pain. Such modifications include depletion of
mast cells [111], reduction of peripheral macrophages
using clodronate [112], and impairment of complement
activation and neutrophil chemotaxis [113].

One of the inflammatory master switches, nuclear factor-
kB (NF-kB), induces multiple cytokines [114] and cyclo-
oxygenase [115]. NF-kB is epigenetically regulated by
acetylation and remodeling of chromatin [114,116,117].
When activated, this transcription factor demethylates and
induces cytokines such as Tumor necrosis factor-alpha
(TNF-a), IL-1, IL-2, and IL-6 [118,119]. Activation of NF-kB
is associated with autoimmune and neurodegenerative
disease [120]. Conversely, inhibition of NF-kB reduces pain
behavior after peripheral nerve injury [121].

Figure 3 Laboratory techniques in epigenetics. (A) In ChIP-seq analysis, an antibody is used on chromatin
to immunoprecipitate and select for acetylation and other histone modifications. The results may then be
analyzed through several techniques including genome-wide next generation sequencing. In this manner,
the histone acetylation patterns of a particular tissue may be determined. (B) The analysis of DNA methy-
lation employs bisulfite sequencing to convert unmethylated cytosines to uracil. This process does not
affect the methylated cytosines. The methylation patterns can be calculated by comparing the ratio of
cytosine to uracil.
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The link between epigenetically induced cytokine produc-
tion and pain intensity has been noted in multiple disease
models such as migraine headache [122], diabetes [114],
and osteoarthritis [99]. In osteoarthritis, DNA demethylation
at specific CpG sites in human chrondrocytes produces
aberrant expression of inflammatory cytokines (IL-1b) and
metalloproteinases [99]. Thus, cytokine-induced painful
joint damage appears to be epigenetically modulated.

GRs

Glucocorticoids are important endogenous regulators
that appear to protect against excessive inflammatory
response following injury. Stress-induced glucocorticoid
production suppresses immune cell release of IL-6,
TNF-a, and other inflammatory cytokines [123]. Exog-
enous glucocorticoids also have potent anti-inflammatory
actions and are used extensively in the treatment of
autoimmune disease and painful conditions. However, not
all patients respond equally to their clinical effects, and it is
believed that glucocorticoid resistance is a likely mecha-
nism in the development of autoimmune disease and
chronic pain [124].

The GR is controlled by a system of complex regulatory
mechanisms, and clinical response to glucocorticoids cor-
relates with the number of intracellular GRs [125]. Nor-
mally, individuals demonstrate variable GR promoter
methylation [103] and variable response to glucocorticoid
therapy [126]. Diverse methylation patterns are believed to
lead to the use of alternative promoter sites and subse-
quent alteration in GR sensitivity [103].

GR expression is also modified by maternal care, groom-
ing, diet [127,128], and early-life stresses [129,130].
Human studies have demonstrated epigenetic alterations
in GRs of patients who previously suffered abuse [131].
The style of maternal care appears to specifically affect
methylation patterns of exon 17 of the GR promoter, epi-
genetically linking receptor function and early-life experi-
ence [132]. Abnormalities in GR-mediated immune cell
function may lead to the development of inflammatory
adult phenotypes [133] and autoimmune disorders such
as rheumatoid arthritis [101,134]. GR dysfunction may
also play a role in fatigue, chronic pain states, and fibro-
myalgia [102,135]. These maternally influenced expres-
sion patterns, however, are not necessarily permanent
and have been reversed in cross-fostering parent
studies [136]. The GR appears to provide a potential link
between injury, environmental stresses, and the severity
of chronic pain.

Opioid Receptors

Both demethylating agents and HDAC inhibitors increase
expression of the m-opioid receptor [137], indicating that
the endogenous opioid system is under significant epige-
netic control. Consistent with these laboratory findings,
increased CpG methylation has been noted in the pro-
moter regions of the m-opioid receptors of heroin users,

consistent with receptor downregulation [76], Likewise,
DNA methylation of the proenkephalin gene promoter
inhibits transcription and gene expression of this opioid
peptide [63].

Beyond the direct role of methylation in the regulation of
opioid peptide expression, spinal opioid receptor activity
also appears to be partially modulated by central GRs
[138]. This association is of particular importance given
the synergy between the increased central expression of
GR following peripheral nerve injury [139] and direct epi-
genetic manipulation of the endogenous opioid system
[63,137]. The interaction between modifications of the GR
and the opioid receptor demonstrates the complex role
that epigenetic alterations play in controlling the inflamma-
tory and pain-modulating pathways.

“Epigenetic Intervention” to Prevent Chronic Pain

Genetic studies have taught us that variability in pain
sensitivity results from multiple genetic and environmen-
tal factors. Environmental influences upon pain severity
have been previously described and linked to early-life
stress [47,140–143]. Although precise mechanisms have
yet to be elucidated, epigenetic modifications are
increasingly appreciated as a likely factor in this linkage
[36,104,122].

Our need for targeted therapies has never been greater.
Multiple analgesic drugs are now in use; however, most
of these share a common function with opioids or
anti-inflammatory medications. These medications have
improved symptoms in some patients, but have created
the additional morbidities of systemic toxicity, opioid tol-
erance, and addiction. Our options for safe and effective
treatments for chronic pain remain limited with few recent
“breakthroughs.”

Since the sequencing of the human genome, there have
been increasing calls for “personalized medicine” that
tailors drug therapy to a patient’s pain phenotype
[47,144]. Although such therapies have demonstrated
some efficacy as cancer treatments [145–147], we have
not yet had great success with targeted pain therapies.
We will now review some of the potential targets for “per-
sonalized epigenetic intervention” (Table 1).

Intervention: HDAC Inhibition

Given the association between histone deacetylation and
cancer, neurodegenerative disease, and pain, histone
deacetylase inhibitors (HDACis) have been evaluated as
therapeutic agents for these diseases [30,36,148]. Thus
far, HDACis are primarily used in cancer therapy. In these
patients, HDACis alter the balance of acetylation/
deacetylation and activate genes that suppress tumor
growth and invasion [30,149–152]. In neurodegenerative
disease, HDACis have been evaluated secondary to their
ability to induce neural growth and to improve memory
[153]. HDACis have also demonstrated evidence for
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analgesia in both inflammatory and neuropathic pain
[151,154,155]. The clinical effect of many of these drugs is
thought to be partially attributed to reduced production of
inflammatory cytokines such as TNF-a and IL-1b [156].

HDACis are organized into several different structural
groups. Trichostatin A (TSA) and suberoylanilide hydrox-
amic acid (SAHA) are hydroxamate-based HDACis. TSA
inhibits both class 1 (ubiquitously expressed) and class 2
(selectively expressed) HDACs, whereas SAHA exhibits
greater selectivity for class 1 HDAC. TSA produces anal-
gesia in animal models with an associated decrease in
expression of transient receptor potential type-1 cation
channel (TRPV1) and protein kinase Ce [157]. SAHA
reduces the nociceptive response of animals during the
second phase of the formalin test [154]. These drugs
increase acetylation of the transcription factor p65/Re1A,
which enhances gene expression of the metabotrobic
glutamate receptors (mGlu2) in dorsal root ganglia
neurons. Activation of these mGlu2 receptors inhibits
primary afferent neurotransmitter release in the dorsal
horn of the spinal cord and provides analgesia in animal
models of neuropathic pain [158]. TSA also enhances
m-opioid receptor transcription [159], indicating partial
HDAC modulation of the endogenous opioid system.

Another HDACi, Givinostat, has not only demonstrated
evidence of analgesia in animal models, but also efficacy
in a human trial for juvenile idiopathic arthritis. Although
randomized studies have not yet been performed, its
use for this autoimmune inflammatory disease is espe-
cially encouraging given its relative lack of systemic
toxicity [160].

The most commonly used HDACi, valproic acid (VPA), is
part of the aliphatic-based drug class that inhibits
classes I and II HDACs [151,161], and is effective fol-
lowing systemic or intrathecal administration [162,163].
VPA is of particular interest because it has been suc-
cessful with long-term clinical use [164]. Although it is
now used predominantly to treat chronic painful condi-
tions [163–165], its inhibition of HDAC and potential to
prevent specific epigenetic alterations may lead to pre-
emptive use in the acute setting. It is not yet clear
whether VPA-induced analgesia results from HDAC inhi-
bition or its ability to potentiate gamma amino butyric
acid (GABA) in the CNS.

Although therapies based on HDAC inhibition have been
effective in treating pain and oncologic disease, nonspe-
cific HDACis such as TSA affect the regulation of multiple

Table 1 Epigenetically active drugs and their mechanisms

Epigenetics
Mechanism Drug Action Clinical Use Comments

Histone
deacetylase
inhibitor

Valproic acid Inhibits classes I and II
HDAC

Seizures, pain Effective for migraine
prophylaxis

Givinostat Inhibits classes I and II
HDAC

Juvenile idiopathic
arthritis

Effective in human arthritis trial

Tricostatin A
(TSA)

Inhibits classes I and II
HDAC

Laboratory only Produces analgesia in animal
models.

Enhances m-opioid receptor
transcription

Suberoylanilide
hydroxamic acid
(SAHA)

Inhibits classes I HDAC Laboratory only Produces analgesia in animal
models

DNA
methylation

Glucosamine Prevents demethylation
of IL-1b gene
promoter

Arthritis pain Common clinical use; effect on
IL-1b reduces inflammatory
cytokine production

Valproic acid Induces demethylation of
reelin promoter

Seizures, pain Reelin modulates NMDA
function and pain processing

L-methionine Induces methylation at
glucocorticoid receptor
promoter gene

Dietary
supplement

Alters experimental stress
response; used as dietary
supplement for arthritis

RNA
interference

siRNA targeted to
NMDA receptor
subunits

Gene silencing of NR1
and NR2 subunits of
NMDA

Experimental Produces analgesia in animal
models

siRNA to P2X3 Gene silencing of P2X3 Experimental Produces analgesia in animal
models; no observed
neurotoxicity with intrathecal
use

siRNA to TNF-a Gene silencing of TNF-a Experimental Produces analgesia in animal
models
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genes, which increases the possibility of side effects with
this therapy [166,167]. The success of future drug devel-
opment will likely depend upon our ability to target specific
subclasses of HDACs that selectively alter pain process-
ing without the toxicities of nonselective agents. The
importance of this selectivity concept has been demon-
strated in a mouse model in which a full knockout of the
HDAC4 gene (a class IIa HDAC) is lethal, whereas a con-
ditional knockout of this gene provides analgesia [168].
Further investigations of HDAC subclass function are
needed in order to identify novel drug targets.

Intervention: DNA Methylation

DNA methylation is another key epigenetic mechanism.
Methylation patterns, although generally stable throughout
the genome, are responsive to pharmacologic interven-
tion. One common medication that appears to act through
epigenetic mechanisms is glucosamine [169]. In arthritis
models, it has been demonstrated that glucosamine pre-
vents demethylation of the IL-1b gene promoter, thereby
decreasing expression of this cytokine. Decreased IL-1b
subsequently reduces NF-kB expression and down-
stream inflammatory cytokine production [119,170].

In addition to its function as an HDAC inhibitor, VPA
induces demethylation of multiple genes [171]. One of
these important genes encodes for reelin, a glycoprotein
synthesized by GABAergic neurons of the CNS [172,173].
Reelin modulates N-methyl-D-aspartate (NMDA) receptor
function [174], and is important for sensory processing
[175]. Mutations of this gene cause alterations in mechani-
cal and thermal hypersensitivity [173], which indicates the
potential significance of VPA regulation of reelin in the
development of chronic pain.

L-methionine administration has also been tested as a
potential drug for epigenetic intervention. This amino acid
appears to increase methylation patterns of the GR gene,
thereby altering the hypothalamic-pituitary-adrenal
response to stress [176]. In addition, dietary methyl
supplementation in an animal model improves the health
and longevity of offspring [177]. Both of these findings
suggest that nutritional status partially controls the activity
of the GR and its role in inflammatory disease.

The combined action of pharmacologic DNA demethyla-
tion and HDAC inhibition increases activity at the proximal
promoter site of the m-opioid receptor gene, increasing
m-opioid receptor expression [137]. Carried out in concert,
these processes may represent an important balance that
allows less stable histone modifications to lead to more
stable changes in DNA methylation, thus facilitating
longer-term modifications in the endogenous opioid
receptor system.

Intervention: RNAi

Epigenetic therapies based on RNAi also hold promise for
preventing and treating chronic pain. These methods
target specific disease pathways.

RNAi is an endogenous mechanism for gene silencing in
plants [178] and mammals [179], and involves subgroups
such as siRNA, miRNA, and shRNA. Given their ability to
silence undesirable gene products in malignancy, these
small RNA molecules have been used for cancer therapy
[82]. They have also been shown to improve chronic neu-
ropathic pain [80].

siRNA targeted for the NR2 subunit of NMDA receptors
abolishes formalin-induced pain behavior in rats [180].
Likewise, injection of siRNA aimed at the NR1 subunit of
the NMDA receptor alleviates experimentally induced allo-
dynia in mice [181]. Successful RNAi studies have tar-
geted TRPV1 channels [182], brain-derived neurotrophic
factor [183], cytokines such as TNF-a [184], and pain-
related cation channels (P2X3) [80]. Importantly, direct
intrathecal administration of siRNA targeting P2X3 in
animals has not demonstrated significant toxicity [80],
indicating that this intervention may be applicable to
humans in coming years.

Conclusions

The transition from acute to chronic pain is a complex
process involving local inflammation and nociceptor acti-
vation that may resolve in some patients and may lead to
the development of chronic pain in others. As we learn
more about the various ways that injury and environment
change gene expression, we can begin to elucidate
disease mechanisms and gain insight into potential thera-
pies. Epigenetic alterations such as DNA methylation,
histone acetylation, and RNAi are necessary for normal
tissue specialization and neurologic development.
However, these same modifications play a significant role
in the induction of the chronic pain phenotype following
neurologic injury.

In contrast to the genetic determinism inherent in genomic
studies, the field of epigenetics strives to understand the
environmental control over gene expression. Such knowl-
edge will open up opportunities for developing novel anal-
gesics. Future personalized therapies will likely be based
on epigenetic interventions that alter the transcriptional
expression that occurs in chronic pain states. Given the
strong mechanistic implications of epigenetic modifica-
tions in the development of chronic pain, and our current
treatment limitations, we possess both the promise of
epigenetic tools and the imperative to prevent the transi-
tion from acute to chronic pain.
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Abstract 

Purpose of review: Surgical incision invariably causes some measure of nerve damage 

and inflammatory response that, in most cases, heals quickly without long-term negative 

consequence. However, a subset of these patients go on to develop lasting neuropathic 

pain that is difficult to treat and, in many cases, prevents the return to normal activities of 

life. It remains unknown why two patients with identical surgical interventions may go on 

to develop completely divergent pain phenotypes or no pain at all. Aggressive, early 

analgesic therapy has been shown to reduce the incidence of chronic post-surgical pain 

(CPSP), but no specific regional anesthetic technique or systemic pharmacologic 

therapy has been shown to prevent CPSP.  

Recent Findings: Inflammation and glial cell activation have recently been shown to be 

just as important in the transition from normal acute pain to pathologic chronic pain as 

nerve injury itself and that central sensitization may not be solely due to repetitive 

nociceptive firing at the time of nerve injury. This has opened a number of new 

therapeutic possibilities for prevention of CPSP.  



Summary: Here we discuss the causes of CPSP and current useful preventative 

strategies in the perioperative period. We also discuss future potential disease modifying 

treatments of CPSP. 
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The long-lasting, life-changing painful sequelae of nerve injury have been recognized for 

many years. S. Weir Mitchell, a neurologist who cared for amputees of the United States 

Civil War said: 

 

 Perhaps few persons who are not physicians can realize the influence 

which long-continued and unendurable pain may have on both mind 

and body . . .  

 

He particularly noted the post-amputation burning pain syndrome, which he termed 

causalgia, to be “the most terrible of all tortures which a nerve may inflict.” [1]  

Though the chronic pain conditions of many war-wounded have been described by 

physicians like Mitchell, Leriche, and Livingston, it was not until the 1980s that the 

medical community began to recognize the growing problem of chronic pain following 

surgery. [2, 3] Since then, a number of small studies have been conducted to examine 

the incidence and prevention of chronic post-surgical pain (CPSP), though few have 

been large, prospective, or randomized. 



Each year in the United States, more than 40 million people undergo surgical 

procedures. Many of these are relatively non-invasive, including colonoscopy and 

cataract removal; however, large numbers of patients undergo major procedures that 

result in varying degrees of nerve damage with the potential for the subsequent 

development of CPSP. For example, 1.7 million people in the US are survivors of limb 

loss, and each year over 130,000 new amputees are added to that number.[4] It has 

been estimated that 50%-80% of these patients experience significant, long-term 

phantom or residual limb pain for months to years following surgery.[5] And 5%-10% of 

these patients develop severe, life-changing, chronic pain. By adding all the patients who 

undergo thoracotomy, caesarean section, herniorrhaphy, and breast surgery, the 

number of new chronic pain cases approaches half a million each year (Table 1). The 

estimated cost in lost productive time from chronic pain conditions like CPSP is over $60 

billion dollars annually.[6] The burdens of related substance abuse, depression, and 

complications of opioid treatment are more difficult to quantify but no less substantial. 

 

Causes of Chronic Post-Surgical Pain 

In 1983, Woolf published the first paper demonstrating the importance of central 

sensitization to the production of chronic post-injury pain.[16] Soon after, it was 

suggested that surgical incision causes inappropriate nerve firing, which leads to this 

sensitization.[2] 

 In addition to simple repetitive nociceptor firing, recent studies have revealed that 

the source of central sensitization can include perioperative noxious stimuli, surgical 

stimuli, and inflammatory mediators.[17] Important work during the past decade has 

identified inflammation and glial cell activation as generators of neuronal sensitization, 

[18] greatly expanding the possibilities for future therapeutics beyond simple prevention 



of nociceptive signaling.  

 

The Immune Response to Nerve Injury  

Peripheral nerve injury is immediately followed by a robust inflammatory response. 

Macrophages localize to damaged nerve fibers. Macrophages and lymphocytes gather 

upstream in the dorsal root ganglion (DRG), and activate microglia and, eventually, 

astrocytes in the central nervous system (CNS).[18, 19] Growth factors released by 

Schwann cells at the site of injury sensitize nociceptors directly.[20] Distal nerve injury 

recruits macrophages proximally to the DRG where, in humans, the immune response 

continues months after the distal inflammation has resolved.[21] In the dorsal horn of the 

spinal cord, large numbers of microglia, which share a common myeloid lineage with 

peripheral macrophages, and circulating monocytes surround the terminals of the injured 

nerve fibers In response to chemokines, such as fractalkine and CCL2,[22] and Toll-like 

receptor signaling.[23] These activated microglia lead to increases in levels of the pro-

inflammatory cytokines IL-1β, IL-6, and TNFα. These cytokines contribute to 

neuropathic pain symptoms, such as mechanical allodynia, by directly sensitizing dorsal 

horn neurons. This series of discoveries describes a completely different paradigm for 

chronic nociceptor sensitization and, potentially, an important new therapeutic target. 

 

Risk Factors for Developing Chronic Post-Surgical Pain 

While many patients who undergo surgical procedures develop chronic pain, many do 

not. Indeed, patients undergoing apparently identical surgical procedures often have 

divergent post-operative pain experiences. For example, one below-the-knee amputee 

may develop severe, unending, disabling phantom limb pain following surgery, while 



another may be pain-free after the surgical incision has healed. This phenomenon has 

yet to be explained, though data on predisposing risk factors for pain development 

continue to be gathered.  

 Comorbid psychosocial factors such as uncontrolled perioperative anxiety,[24] 

post-traumatic stress disorder, and predisposition to catastrophizing[25] correlate with 

the development of CPSP. Lack of social support or an overly solicitous spouse has also 

been associated with worsened pain scores following amputation. A number of specific 

genetic polymorphisms have been linked to the incidence of CPSP, and these may lead 

to the discovery of pathways that control the transition from acute to chronic pain.  

 Severe preoperative and immediate postoperative pain is a strong predictor of 

the development of chronic pain following a variety of surgical procedures.[26-28] The 

reason for this association remains unclear but possible explanations include 1) 

structural CNS changes caused by the presence of severe preoperative pain, 2) an 

unknown genetic factor that predisposes some patients to both acute and chronic pain, 

and 3) anxiety and a tendency toward catastrophizing in patients who report more 

intense pain than those without these psychological traits.[29] The association between 

severe perioperative pain and the development of chronic pain, however, does provide 

at least one important avenue for preventing CPSP and has been the foundation for 

using regional anesthetic techniques perioperatively to block nociception and 

subsequent sensitization. 

 

Prevention and Treatment 

Regional and Neuraxial Analgesia 

It is difficult to talk about treatment of chronic post-surgical pain without also discussing 

prevention strategies. Once entrenched, central sensitization leads to pain phenotypes 



that are very difficult to reverse and extremely complicated to treat. Prevention, then, 

currently appears to be the most promising way to reduce the overall incidence of CPSP, 

though current strategies have not been as successful as hoped.  

 Early studies examining the incidence of CPSP after amputation in the setting of 

perioperative epidural analgesia resulted in some encouraging findings. A 1988 

unblinded epidural analgesia study reported reduced phantom limb pain at 6 and 12 

months in patients receiving epidural bupivacaine and morphine for 72 hours before 

amputation compared to controls.[30] This was followed by a case control study of 24 

patients treated with epidural bupivacaine, clonidine, and morphine who showed an 8% 

incidence of phantom limb pain compared with 73% in a control group.[30] However, 

when confirmatory, randomized prospective studies were performed to confirm these 

findings, the results proved to be much different. Nikolajsen and colleagues randomized 

patients to groups receiving epidural analgesia for the entire perioperative period and 

patients receiving epidural analgesia postoperatively only.[31] At 12 months, phantom 

limb pain was present in 75% of the patients who received epidural analgesia throughout 

the perioperative period and in 69% of those receiving postoperative analgesia only. 

Karanikolas and colleagues in 2010 attempted to determine which of five analgesic 

regimens, including epidural analgesia in three of the five regimens, reduced chronic 

phantom limb pain after amputation. [32] This study concluded that epidural analgesia 

throughout the perioperative period was no different than patient controlled opioid 

analgesia throughout the perioperative period at reducing the prevalence of chronic 

phantom limb pain. 

 Similar results were found when studying peripheral nerve blockade as a method 

for preventing CPSP. In 1991, Fisher and Meller published an observational study that 

followed 11 patients who had undergone lower extremity amputation with intraoperative 



placement of a perineural catheter.[33] None of these patients had developed phantom 

pain at 12 months. Unfortunately, as with epidural analgesia, when followed up with 

prospective, randomized studies, these exciting results were not reproduced. In 1996, 

Pinzur and colleagues[34] randomized amputation patients to receive bupivacaine or 

saline through an intraoperatively-placed catheter. No difference in the incidence of 

phantom limb or stump pain was reported.  

 Recently, Borghi and colleagues,[35] studied preoperative percutaneously placed 

peripheral nerve catheters in patients about to undergo amputation. A local anesthetic 

infusion was not administered preoperatively, but a postoperative infusion was continued 

for a median duration of 30 days. The incidence of phantom limb pain at 12 months was 

16%, much lower than the background incidence of phantom limb pain noted in other 

studies. Though encouraging, this was not a randomized trial. 

 This section has focused mainly on regional anesthesia in CPSP after 

amputation, but the conclusions are applicable across multiple surgeries including 

thoracotomy, as neither epidural analgesia nor paravertebral nerve blockade has been 

proven to reduce the incidence of severe, chronic post-thoracotomy pain. Providers 

quickly learn, when treating patients with chronic pain, that there is no simple treatment, 

straightforward etiology, or uncomplicated prevention strategy. Therefore, it is 

unsurprising that simple blockade of nociceptive input has not yet been proven sufficient 

to prevent chronic sensitization. Regional anesthetic techniques, however, remain a vital 

part of the effort to reduce pain perioperatively, as perioperative pain severity has been 

strongly associated with the development of CPSP. 

 

Systemic Analgesia 



 Regional anesthetic techniques have not proven to be sufficient to prevent 

chronic pain after surgery, thus, a multimodal approach to perioperative pain 

management remains important. Opioids continue to be the mainstay of acute pain 

control, but a number of other pharmacologic agents can act as adjuvants in the 

perioperative period. 

 NSAIDS and acetaminophen have an opioid-sparing effect and are efficacious in 

controlling acute pain following amputation and thoracotomy,[36, 37] but there is no 

evidence that these medications prevent chronic post-surgical pain.  

The α2 adrenergic agonist, clonidine, is often used to treat both acute and 

chronic neuropathic pain. Interestingly, clonidine has a role in regulating the levels of 

inflammatory cytokines following nerve injury; and in an animal model of sciatic nerve 

injury, clonidine reduces mechanical hypersensitivity.[38] Clonidine’s ability to prevent 

CPSP is unknown, but its anti-inflammatory and anti-sensitizing effects make it a prime 

candidate for further study.  

The NMDA receptor antagonist, ketamine, has been used successfully to treat 

acute postoperative pain, especially in chronic pain patients.[39, 40] Because activation 

of the NMDA receptor is required for the development of central sensitization, it was 

hoped that partial blockade of NMDA receptor activity by drugs like ketamine during the 

perioperative period would reduce the incidence of CPSP, but this has not been the case 

in subsequent studies.[41, 42]  

Gabapentin and pregabalin are calcium channel blockers that reduce 

neurotransmitter release and neural sensitization. Gabapentinoids reduce opioid 

requirements as well as acute pain in the perioperative period.[43] When used without 

regional anesthesia, gabapentin reduces CPSP. However, in another study by 



Nikolajsen and colleagues, amputation patients, most of whom also received epidural 

analgesia, were randomized to receive gabapentin or placebo after amputation.[44] No 

difference in the incidence of chronic phantom limb pain was found. 

 

Future prevention modalities 

 While sufficient analgesia before, during, and after surgery is important for the 

prevention of chronic post-surgical pain, mere short-term blockade of nociception and 

control of symptoms have not been shown to eliminate this long-term problem. 

Knowledge of the pathophysiologic processes causing the transition from useful, short-

lived acute pain to pathologic, destructive chronic pain has expanded significantly over 

the past decade, as the vital role of inflammatory mediators and glial cell activation in 

nociceptor sensitization has been revealed. Improved understanding of these, and other 

novel chronic pain mediating pathways creates the potential for disease modifying 

treatments rather than symptom-focused treatments. For example, a new class of 

circulating anti-inflammatory molecule, called resolvins, have recently been described 

and found to be have endogenous analgesic effects.[45, 46]  Resolvins are lipid 

mediators derived from omega-3 fatty acids that are produced in leukocytes and have 

been found to attenuate inflammatory pain by inhibiting neutrophil infiltration and pro-

inflammatory cytokine expression. Also, Resolvin D2 when administered intrathecally in 

mice, is able to reverse the long-term potentiation created by tetanic stimulation of C-

fibers in the sciatic nerve [46]. Other potential novel preventative treatments could target 

purinoreceptors, like P2X4 in microglia, whose activation causes dorsal horn neuron 

hyperexcitaility [47, 48].  Treatment with growth factors such as glial cell line derived 

neurotrophic factor (GDNF) have been shown to reduce neuropathic pain development 



in animal models of CPSP[49]. Blockade of growth factors like NGF appear to inhibit 

chronic nociceptor sensitization [50].  

Conclusion 

Current acute post-surgical pain treatment involves analgesia targeting opioid 

receptors, cyclooxygenase, nociceptor signaling and NMDA receptor signaling. This 

multimodal approach has transformed the patient experience of pain immediately 

following surgery, but has not substantially lessened the long-term disease burden of 

those unfortunate patients who undergo the often catastrophic transition to chronic post 

surgical pain. Continuing to improve the understanding of the mechanisms behind this 

transition is vital to expanding our current multimodal approach to include disease 

modifying preventative treatments for chronic post surgical pain. 

  

 

- Surgical procedures involving damage to large nerves, such as amputation 

and thoracotomy, are associated with up to an 80% incidence of chronic 

pain with up to a 10% of those severe and disabling. 

- Our understanding of the variability of chronic pain development between 

patients with identical surgical procedures is limited. 

- New information linking inflammation and glial cell activation to chronic 

neuropathic pain has opened the possibility of novel therapeutics. 

- At this time, aggressive perioperative analgesia is the only known effective 

way to prevent CPSP. 
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Prevention of Chronic
Pain After Surgical
Nerve Injury:
Amputation and
Thoracotomy

Thomas Buchheit, MD*, Srinivas Pyati, MD

ACUTE POSTSURGICAL PAIN

A surgical incision produces tissue damage, subsequent inflammation, and acute
postoperative pain. Although most patients heal without long-term sequelae, proce-
dures, such as amputation, thoracotomy, hernia surgery, coronary artery bypass,
and mastectomy, impose a significant burden of persistent postsurgical pain.1–3

However, amputation and thoracotomy represent two of the higher-risk procedures.
These surgeries involve obligatory neurologic injury, often leading to a cascade of
postinjury sensitization and chronic neuropathic pain.1,4

Although amputation and thoracotomy have different indications and are performed
using different techniques, they demonstrate a remarkable similarity both in the
severity of acute postoperative pain and in the incidence of persistent postsurgical
neuralgic pain.1 Our ability to control incisional and inflammatory pain in the immediate
postoperative period has improved with the combined use of local anesthetics,
opioids, and other systemic medications. However, our tools to avoid central sensiti-
zation following nerve injury remain limited.
In recent years, an increased emphasis has been placed on the prevention and

management of postinjury chronic pain states secondary to the military conflicts in
the Middle East and around the globe. Between 2001 and 2010, more than 1600
US military personnel underwent amputation following military trauma.5 In addition,
natural disasters, such as the 2010 Haitian earthquake, have created more than
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6000 amputees.6 Amputation surgery for medical and vascular disease also remains
common, with a national rate of approximately 188 lower extremity amputations per
100,000 people.7 Given the combination of soft tissue, bone, and neurologic injury
that occurs in the course of an amputation, initial management is often problematic;
patients experience not only nociceptive pain but also acute neuralgia and occasion-
ally the immediate onset of phantom limb pain.8

Similarly, thoracotomy is characterized by a high incidence of both severe acute
pain and intractable postoperative pain.9 Poor analgesia following thoracotomy leads
to poor chest wall mechanics, impaired cough, and subsequent respiratory and infec-
tious complications. Given the preexisting tenuous pulmonary function of many thora-
cotomy patients, further decreases in pulmonary function may lead to significant
additional morbidity.10,11

An ideal perioperative analgesic regimen for surgeries, such as amputation and thora-
cotomy,wouldnotonly facilitate the immediate relief of sufferingbutwouldalso reducethe
burdenofchronicpostsurgicalpain. Indeed, thesegoals seemphysiologically linkedgiven
the correlation between the severity of perioperative pain and the prevalence of chronic
pain.12–14 Despite these observational associations, the prevention of chronic postsur-
gical pain hasbeenmore difficult to accomplish than initially proposed.15–17 In this review,
the authors discuss perioperative pain management techniques and modifiable risk
factors to prevent chronic pain following amputation and thoracotomy.

CHRONIC POSTSURGICAL PAIN: AMPUTATION

Patients undergoing amputation experience a high level of both phantom and
residual limb pain following surgery. Of these 2 complications, phantom limb pain
has been more frequently discussed in the literature, with an estimated prevalence
of 51% to 85%.18–21 Residual limb pain is also reported after amputation, with
a frequency of 45% to 74%.22–24 Although residual limb pain phenomena, such as
causalgia25,26 and neuroma,22,27 have been reported, they have not been systemat-
ically studied as separate entities in the residual limb.23,27–30 Nonetheless, distinc-
tion between the residual limb pain subtypes of neuroma, complex regional pain
syndrome, and somatic pain is important for research and clinical care because
all postamputation pain subtypes may not equally respond to a given therapy.
The appropriate treatment and prevention of postamputation pain is also of functional

significance for patients. In a study of 2694 patientswith amputations, 51%hadphantom
limb pain severe enough to impair lifestyle more than 6 days per month and 27% expe-
rienced pain more than 15 hours per day.20,31 The effects of residual limb pain may have
even greater functional implications for the patients with amputations because of its
impact on prosthetic use, ambulation, and rehabilitation.23,32

In 1984, it was reported that fewer than 10% of patients with phantom limb pain ob-
tained prolonged pain relief from medical treatments,31 and only limited progress has
been made since that time.22,33 Surgical techniques, including dorsal root entry zone
lesions, surgical sympathectomies, and spinal cord stimulation, have also been
used.34–36 Currently, however, there is a lack of evidence to support the efficacy of
these techniques.37 There are promising data regarding improvements in phantom
limb pain from body reimaging techniques with mirror box therapy; unfortunately,
this intervention does not improve residual limb pain.38

CHRONIC POSTSURGICAL PAIN: THORACOTOMY

Persistent post-thoracotomy pain is described as “pain along the incision site that
persists or recurs after thoracotomy for at least two months following the surgical
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procedure.”4 The cause of chronic pain following thoracotomy is undoubtedly similar
to that following amputation. Neurologic injury at the time of surgery is likely the source
of neuropathic pain, central sensitization, and persistent postsurgical pain in these
patients.4

Up to 60% of thoracotomy patients report intractable pain a month after surgery and
30% to 50% report pain at 1 to 2 years.10,39,40 Many of these patients describe signif-
icant physical limitations and sleep disturbances months and even years after
surgery.41 Similar to amputation pain, there is a strong correlation between severe
perioperative pain and the incidence of chronic post-thoracotomy pain.42–46

RISK FACTORS FOR DEVELOPING CHRONIC POSTSURGICAL PAIN

Although all patients who undergo amputation and thoracotomy experience peripheral
nerve injury, not all develop persistent neuropathic pain. Therefore, predisposing risk
factors must also be present for chronic postsurgical pain to develop. Regarding
amputation, identified chronic pain risk factors include severe perioperative pain,
psychosocial comorbidity, and genetic predisposition. In particular, the association
between severe preoperative pain12,14,47–49 and postoperative pain13,46,50 and the
development of chronic pain supports the critical importance of acute symptom
management. Indeed, both pharmacologic evidence51 and radiologic demonstra-
tion52–54 suggests central nervous system reorganization and sensitization in patients
with amputations. Logically, if the preoperative stimulus is removed, thereby reducing
the pain memory, the risk of persistent pain following amputation may decrease. A
similar correlation between severe perioperative pain and chronic pain is also well
documented in patients undergoing thoracotomy.42–46 These observed associations
between acute symptoms and chronic pain were part of the theoretical foundation
behind the preemptive use of regional anesthesia before amputation and
thoracotomy.15,48,55

Psychosocial factors also have an impact on the risk of chronic postoperative pain.
Comorbidities, such as preoperative anxiety56,57 and depression,22,47,58,59 correlate
strongly with persistent postsurgical pain. A comprehensive preoperative evaluation
to identify these risk factors may have an impact on reducing the burden of chronic
postsurgical pain.60

Gender and genetic risk factors are also increasingly appreciated as important to
the development of chronic pain following surgery.61 Several gene single nucleotide
polymorphisms that may contribute to the development of neuropathic pain have
been identified. Detailed discussions of these genetic factors may be found in
previous publications62,63 but are outside the scope of this review.
Given our current ability to identify predisposing factors for developing chronic post-

surgical pain, we can now risk stratify patients who need more intensive multimodal
therapy.64 In subsequent sections, the authors focus on analgesic interventions that
have been studied to reduce the incidence of persistent postsurgical pain.

ACUTE PAIN MANAGEMENT TECHNIQUES

Although there are evidence-based guidelines for acute pain management following
thoracotomy,65 there are no established guidelines for symptom management
following amputation because of the inconsistent outcomes and methodological limi-
tations of studies to date.66 Surgical techniques, such as traction neurectomy and
nerve implantation into muscle, may lessen the incidence of symptomatic
neuromas.67 However, these changes in technique have not significantly decreased
the prevalence of chronic postamputation pain.22 Likewise, minimally invasive

Prevention of Chronic Pain 395



thoracic surgery has not dramatically improved the incidence of moderate to severe
pain following thoracotomy.68

Many of the techniques studied in recent years for managing postamputation and
post-thoracotomy pain have been initiated preoperatively.69 This preemptive effect
is designed to reduce nociceptive traffic to the spinal cord and central nervous
system. In animal models, painful neuropathy can be attenuated with local anesthetic
pretreatment70,71 or by aggressive early treatment of pain.14 Preemptive and perioper-
ative therapies have been studied in an effort to reduce the burden of both acute and
chronic postsurgical pain.

EPIDURAL ANALGESIA: AMPUTATION

Epidural analgesia is a common modality used to control acute pain at the time of
amputation. Given the association between severe preoperative pain and chronic
pain, investigators have hypothesized that aggressive perioperative pain control
with epidural catheter infusion will also lessen the incidence of chronic postamputa-
tion pain. In a 1988 unblinded study of preemptive epidural analgesia, 25 patients in
the epidural group reported dramatically reduced phantom limb pain at both 6 and
12 months when compared with controls.15 Similarly, in a 1994 case-controlled study,
Jahangiri and colleagues72 observed only an 8% incidence of phantom limb pain in 24
patients treated with epidural bupivacaine, clonidine, and diamorphine compared with
a 73% incidence in the control group treated with systemic opioids.
Unfortunately, these early successes were not repeated in later studies subjected

to greater methodological rigor. In a 1997 prospective study, Nikolajsen and col-
leagues17 randomized patients to receive preoperative and postoperative epidural
blockade or standard postoperative epidural analgesia. At 12 months, both groups
had a significant incidence of phantom limb pain: 75% in the preoperative and post-
operative block group and 69% in the standard epidural group. Although a nonepidural
treatment group was not included in this study, the incidence of phantom limb pain in
these 2 study arms was similar to the background prevalence of phantom limb pain
noted in other studies.21,24,73 In a follow-up article, Nikolajsen and colleagues74 exam-
ined the effect of preoperative and intraoperative epidural analgesia on stump sensi-
tization after amputation. Again, they found no significant improvements. These
findings are consistent with other clinical studies demonstrating that the timing of
an analgesic intervention is not of critical importance.69

The current de-emphasis of the preemptive analgesia paradigm, however, has not
lessened the significance placed on effective pain relief at the time of surgery. Indeed,
the importance of successful analgesia is further supported by the 2011 publication by
Karanikolas and colleagues75 assessing epidural versus systemic analgesia in 65
patients undergoing amputation. Nearly all patients receiving epidural infusion or
effective systemic analgesia saw a reduction in the prevalence of phantom limb
pain at 6 months when compared with the controls treated with nurse-delivered intra-
muscular opioids. This article supports the concept that the success of analgesia may
be more important than the specific technique used.

EPIDURAL ANALGESIA: THORACOTOMY

Similar to the interventions used for amputation surgery, epidural infusion has
also been the gold standard for pain relief following thoracic surgery.76 Thoracic
epidural analgesia provides superior postoperative pain control when compared
with parenteral opioids77,78 and also facilitates early extubation, rehabilitation, and
decreased perioperative complications.79 The Procedure Specific Postoperative
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Pain Management working group (www.postoppain.org) recommends thoracic epi-
dural or paravertebral blocks for thoracic surgery as the first-line approach.
Despite the documented efficacy of thoracic epidural analgesia in the perioperative

setting, the technique still fails in a significant number of patients.80 The reason for this
is unclear, and multiple hypotheses include catheter malposition, opioid tolerance, or
poor drug spread to nerves located on the operative side.81–84 Currently, there is
limited evidence to support the notion that epidural analgesia reduces the incidence
of chronic post-thoracotomy pain.

REGIONAL ANALGESIA: AMPUTATION

As an alternative to epidural analgesia, several trials of perineural catheters have been
conducted in an effort to improve both acute and chronic pain symptoms following
amputation. Initial studies of surgically placed perineural catheters were encouraging.
In 1991, Malawer and colleagues85 reported excellent perioperative analgesia with
nerve sheath catheters in patients with amputations, and Fisher and Meller16

described the complete absence of phantom limb pain in 11 patients treated with
this technique.
Additional trials of this technique, however, did not reproduce these initial positive

results. In 1994, Elizaga and colleagues86 observed no significant improvement in
acute or chronic pain in patients treated with surgically placed catheters. Other
studies have reported either modest87 or no improvement in the incidence of phantom
limb pain.88 It is also notable that surgically placed perineural catheters seem to
provide inferior acute analgesia when compared with other regional anesthesia and
epidural techniques.89 The inadequate perioperative analgesia may be secondary to
the distal placement of the catheter with minimal blunting of sensation at the surgical
site. It is unknown whether the reduction in acute analgesia from surgical catheters
has implications for longer-term postsurgical pain.
Although the previously mentioned studies of surgically placed perineural catheters

provided equivocal results for managing postamputation pain, other percutaneous
catheter insertion techniques are now commonly used by anesthesiologists and
provide some potential advantages.90 First of all, catheters may be placed preopera-
tively and used in a preemptive fashion. Secondly, andmore importantly, the catheters
may be placed in a location proximal to the incision, improving postoperative
analgesia.
Previous studies gave sporadic reports of effective management of amputation pain

using proximal perineural catheters.91–93 More recently, Borghi and colleagues94 eval-
uated this technique in a more systematic manner and found that prolonged perineural
catheter use provided effective acute analgesia and long-term reduction of phantom
limb pain. Notable aspects of this study were the lack of preoperative infusion and the
prolonged duration of postoperative catheter use (median catheter duration of 30
days). Although not a randomized trial, the investigators did find only a 16% incidence
of phantom limb pain at 12 months follow-up. These results have not yet been dupli-
cated but are quite encouraging.

REGIONAL ANALGESIA: THORACOTOMY

Similar to perineural catheter infusions for amputation pain, paravertebral nerve
blockade also involves the delivery of local anesthetic to nerves after they exit the
spinal canal. Single-injection techniques at multiple dermatomes and continuous par-
avertebral catheters are generally used to manage pain from thoracotomy surgery.
The classic method uses a loss-of-resistance technique; however, nerve stimulator
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localization95 and ultrasound techniques are also well described.96–98 Ultrasound
guidance improves accuracy of paravertebral catheter placement and minimizes the
risk of pleural puncture.99,100 Karmarkar and Richardson101,102 provide additional
details about these techniques.
Recent studies suggest that paravertebral nerve block provides comparable anal-

gesia to epidural infusion with greater hemodynamic stability103 and a better short-
term side-effect profile.104 The side effects associated with thoracic paravertebral
blockade are generally low, although local anesthetic toxicity, block failure, bleeding,
and pleural puncture may occur.101,105,106 It is thought that pulmonary function is
preserved with paravertebral block, subsequently decreasing pulmonary
morbidity.3,107–109 Thus, paravertebral blockade along with epidural infusion is still
recommended.

SYSTEMIC MULTIMODAL ANALGESIA

Despite the recent emphasis placed on the perioperative use of epidural analgesia and
peripheral nerve blockade, these techniques alone may not be sufficient for the
prevention of chronic postsurgical pain. Circulating humoral inflammatory factors
also induce central sensitization and neuropathic pain,110,111 providing scientific justi-
fication for using multimodal systemic analgesia. Multimodal strategies use concur-
rent therapies in an effort to maximize pain relief and minimize side effects,
particularly those related to opioid analgesics.112 Although opioid analgesics remain
an important part of the acute pain protocol for amputation and thoracic surgery, their
singular use is often not sufficient to provide effective systemic analgesia. In this
review, the authors discuss adjuvant analgesics and novel nonopioid pain control
strategies.

Nonsteroidal Antiinflammatory Drugs

Nonsteroidal antiinflammatory drugs (NSAIDs) have been extensively investigated in
the perioperative period, and their use improves analgesia, reduces opioid require-
ments, and reduces opioid-related side effects.113 Additionally, the question of
preemptive analgesia from preoperative NSAID administration has been investigated
in more than 20 trials. However, preoperative dosing improved symptommanagement
in only 2 of these trials when compared with intraoperative and postoperative dosing,
indicating that there is likely little or no preemptive effect from these drugs.69

Cyclooxygenase-2 (COX-2) inhibitors are sometimes preferred in the perioperative
period given their decreased effect on platelet function. Similar to other NSAIDs, the
COX-2 inhibitor celecoxib demonstrates improvement in acute analgesia with an
opioid-sparing effect but no significant preemptive analgesic effect.114–116 Celecoxib
has demonstrated efficacy as part of a multimodal strategy for thoracic surgery.117

Studies related to NSAID efficacy following amputation are lacking, but these analge-
sics should be considered given their documented effectiveness for acute pain.
However, there is no current evidence that NSAID use prevents either chronic postam-
putation or post-thoracotomy pain.

Acetaminophen

Oral acetaminophen has enjoyed long-term use for managing acute pain, and intrave-
nous (IV) acetaminophen has recently been approved in the United States. Although
both forms have been used in the perioperative period, the IV formulation may have
some advantages given its reliable pharmacokinetics and ease of administration.118,119
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Because acetaminophen improves acute analgesia in patients undergoing thora-
cotomy, it is increasingly being used in the perioperative period, except in patients
with significant liver disease.120 Although there are concerns about the safety of
chronic acetaminophen use, acute administration of up to 4 g/d seems to be safe in
most patients.121 Similar to NSAIDs, however, no studies have demonstrated that
acetaminophen reduces chronic postamputation or post-thoracotomy pain. Nonethe-
less, given its minimal effect on platelet aggregation, perioperative bleeding, and renal
function,122 acetaminophen should be strongly considered in the perioperative
setting.

Gabapentinoids: Gabapentin/Pregabalin

There has been significant interest in the use of gabapentinoids for neuropathic pain
since their 1993 release in the United States. Because these drugs can inhibit Ca21

currents and reduce neurotransmitter release associated with neural sensitization,123

they have demonstrated efficacy in multiple neuropathic pain conditions.124,125

Gabapentin and pregabalin have been studied as a preemptive measure before
surgery with evidence of decreased acute pain, opioid consumption, and improve-
ment in opioid-related side effects.126–128 Additionally, gabapentin is effective in
reducing the severity of chronic phantom limb pain.33 Despite the demonstrated effi-
cacy of gabapentinoids in acute and chronic neuropathic pain, they have not been
shown to prevent chronic phantom limb pain when given in the immediate postoper-
ative period.129 Although their use following amputation may be appropriate given
their beneficial effect on acute postoperative pain, future research is needed to estab-
lish optimal timing, dosing, and efficacy of perioperative gabapentenoids.128,130,131

Clonidine

Clonidine, an a2 adrenergic agonist, plays a potential role in the treatment of neuro-
pathic pain because of the expression of a2A receptors at the site of nerve injury132

as well as on local infiltrating macrophages and lymphocytes.133 Clonidine administra-
tion decreases the local expression of inflammatory cytokines, such as TNF-a and IL-
1b, and improves hypersensitivity following nerve injury.134 Epidural and perineural
clonidine have also been studied as a therapy for neuropathic pain134 and have
been used clinically in the treatment of chronic postamputation pain.135,136 Because
a2A-adrenoceptors and inflammatory cytokines play important roles in the production
of postamputation chronic pain, clonidine deserves further investigation. It is generally
well tolerated, but its clinical use is occasionally limited by dose-dependent side
effects, such as hypotension and sedation.137

Ketamine

Ketamine is an antagonist of the N-methyl D-aspartate receptor known to be involved
in central sensitization and neuropathic pain.138 It has been used in the treatment and
prevention of chronic pain following nerve injury, although randomized controlled effi-
cacy trials are still lacking.139 Ketamine has been investigated as a systemic drug51,140

and an epidural drug141 for amputation surgery and it has been shown to reduce
stump sensitivity in the immediate postoperative period.141 Although ketamine has
also been found to reduce acute hyperalgesia and allodynia when given at the time
of thoracic surgery,142 it is not effective for treating chronic postamputation pain141

or post-thoracotomy pain.143
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SUMMARY AND FUTURE DIRECTIONS

Growing evidence suggests that multimodal analgesia, using a combination of
catheter-based techniques94,144 and systemic analgesics,112,145,146 reduces the
risk of chronic postsurgical pain. Comprehensive therapy is particularly important
for patients undergoing high-risk surgeries, such as amputation and thoracotomy.
With the recent demonstration that effective acute pain management, regardless
of the method used, decreases the prevalence of phantom limb pain at 6 months,75

we now have the scientific justification and the ethical obligation to treat these
patients with the multiple tools at our disposal. Furthermore, because prolonged
perineural catheter infusions may reduce the burden of postamputation pain,94

we must reevaluate the postoperative treatment period. Therefore, rather than
several days of recovery, we may need to consider prolonged therapies during
the time of neurologic plasticity. If we can alter this postoperative remodeling
process, we will have an additional tool to reduce the incidence of chronic postsur-
gical pain.
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Title:  Pre-operative dexamethasone decreases the development of chronic mechanical allodynia in a mouse

tibial spared nerve injury model. 

AUTHOR(S): 
T. Van de ven1, H. Hsia1, T. Buchheit1, H. Sheng 1, A. D. Shaw1 

1. Duke University, Durham, NC

Background: 

Patients undergoing certain surgical procedures, such as thoracotomy or amputation, are at high risk for 

the development of chronic neuropathic pain.  A large percentage of patients undergoing these major 

surgical procedures continue to have pain at the surgical site one year following the procedure and 

current therapy is limited. 

New research suggests that pro-inflammatory responses to nerve injury play an important role 

in the development of chronic neuropathic pain.  After peripheral nerve injury, macrophages, 

neutrophils, lymphocytes and mast cells infiltrate the injured nerve and release inflammatory mediators 

which cause further damage and can sensitize nociceptive receptors leading to peripheral and central 

sensitization.3 Given the immunomodulatory and anti-inflammatory properties of dexamethasone, it 

deserves further research as a candidate drug for prevention of the development of chronic neuropathic 

pain. For this study, a spared nerve injury (SNI) mouse model was used to test dexamethasone as a 

therapeutic and preventative intervention in the development of chronic mechanical allodynia. 1,2 

Methods: 

After IACUC approval, 30 C57/Bl6 mice were divided into three groups.  5 mice were used as the nerve 

injury control group and received a spared tibial nerve injury without pharmacological intervention.  5 

mice were used as sham controls in which dissection down to the sciatic nerve and subsequent branches 

was accomplished, but no ligation and transection of nerves was performed.  5 mice were used as the 

experimental intervention group where intraperitoneal dexamethasone (10mg/kg) was administered 1 

hour prior to surgical ligation and transection of the sural and common peroneal nerve with sparing of 

the tibial nerve.  All surgery was performed under isoflurane anesthesia.  

All mechanical threshold testing, including baseline and all subsequent post-surgical measurements, was 

performed with an electronic von Frey anesthesiometer (Life Science 2390 series).  Baseline mechanical 

threshold testing was performed prior to surgery.  Post-surgical measurements were performed starting 

on post-operative day 3 and every following third day, finishing on post-operative day 21.   

Results: 

Out of the three groups, only the SNI group demonstrated a statistically significant decrease in 

mechanical paw withdrawal thresholds on the operative side and maximal effect was observed on day 

15. For the SNI group; ipsilateral compared to contralateral paw withdrawal thresholds: 1.21g +/-



0.127g vs. 5.32g +/- 1.21g, P = 0.041, respectively.  For the sham control group; ipsilateral compared to 

contralateral paw withdrawal thresholds: 5.15g +/- 0.25g vs. 4.82g +/- 0.34g, P = 0.251, respectively.  For 

the dexamethasone experimental group; ipsilateral compared to contralateral paw withdrawal 

thresholds: 5.392 +/- 0.299 vs. 5.496g +/- 0.76g, P = 0.784.  

Conclusion: 

Given these results, dexamethasone likely prevents the development of chronic mechanical allodynia by 

suppressing inflammatory processes leading to peripheral and central sensitization.   

References: 
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Title:  Sub-anesthetic ketamine prior to nerve lesion reduces the development of chronic neuropathic pain in a 
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1. Duke University, Durham, NC

Background: 

A common complication of nerve injury is the development of neuropathic pain.  Patients undergoing 
surgical procedures, especially those requiring a large incision or amputation, are at high risk for the 
development of chronic neuropathic pain.  A large percentage of patients undergoing these major 
surgical procedures continue to have pain at the surgical site one year following the procedure and 
current therapy is limited. The purpose of this study is to utilize a spared nerve injury (SNI) mouse model 
to test ketamine as a therapeutic and preventative intervention in the development of chronic 
neuropathic pain.  This spared nerve model for neuropathic pain has been previously validated by prior 
research.1  

NMDA receptor activity is thought to play a major role in central sensitization involved in the 
development of chronic neuropathic pain.2 Ketamine, given as an anesthetic dose in a mouse SNI model, 
prevents the development of changes in mechanical thresholds.1 This study postulated that a sub-
anesthetic dose prior to SNI would also prevent the development of changes in mechanical threshold 
associated with a neuropathic pain phenotype.  

Methods: 

After IACUC approval, 25 C57/Bl6 mice were divided into three groups.  5 mice were used as the nerve 
injury control group and received a spared tibial nerve injury without pharmacological intervention.  5 
mice were used as sham controls in which dissection down to the sciatic nerve and subsequent branches 
was accomplished, but no ligation and transection of nerves was performed.  5 mice were used as the 
experimental intervention group where subcutaneous ketamine (20mg/kg) was administered in 
between the shoulder blades 1 hour prior to surgical ligation and transection of the sural and common 
peroneal nerve with sparing of the tibial nerve.  All surgery was performed under isoflurane anesthesia.  

All mechanical threshold testing, including baseline and all subsequent post-surgical measurements, was 
performed with an electronic von Frey anesthesiometer (Life Science 2390 series).  Baseline mechanical 
threshold testing was performed prior to surgery.  Post-surgical measurements were performed starting 
on post-operative day 3 and every following third day, finishing on post-operative day 21.         

Results: 

Out of the three groups, only the SNI group demonstrated a statistically significant decrease in 
mechanical paw withdrawal thresholds on the operative side and maximal effect was observed on post-



operative day 15 (POD 15).  For the SNI group; ipsilateral compared to contralateral paw withdrawal 
thresholds: 1.21g +/- 0.127g vs. 5.32g +/- 1.21g, P = 0.041, respectively on POD 15.  For the sham control 
group; ipsilateral compared to contralateral paw withdrawal thresholds: 5.15g +/- 0.25g vs. 4.82g +/- 
0.34g, P = 0.251, respectively on POD 15.  For the ketamine experimental group; ipsilateral compared to 
contralateral paw withdrawal thresholds: 4.512g +/- 0.637g vs. 5.36g +/- 0.955g, P = 0.13 on POD 15.  

Conclusion:   

Given these results, a sub-anesthetic dose of ketamine 20mg/kg prior to spared nerve injury likely 
attenuates or prevents the development of mechanical allodynia most likely through NMDA receptor 
antagonism, which inhibits central sensitization.      

 

References: 
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ABSTRACT:
Background: Persistent pain after surgical nerve damage is a significant problem, affecting patients undergoing many different
procedures. The biological pathways responsible are poorly characterized, and little progress has been made in the field of novel
analgesic development. In order to prioritize the biological pathways of relevance we have compared the plasma metabolomes of humans
with persistent pain after surgical amputation and C57/Bl6 mice undergoing spared nerve injury. We hypothesize that pathways that are
demonstrably important in both species represent high priority candidates both for further mechanistic study, and also for therapeutic
target discovery.
Methods: After IRB and IACUC approval we are studying 20 human subjects with persistent neuropathic pain who had sustained a
traumatic amputation in the prior 3-18 months, and 20 C57/Bl6 mice who underwent sciatic spared nerve injury in the prior 3 weeks.
Human chronic pain phenotypes were adjudicated by committee, mice chronic pain phenotypes were measured using electronic Von Frey
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apparatus and plasma samples were drawn for metabolomic analysis from both humans and mice. Assays are conducted by Metabolon
Inc, Raleigh, NC. Data are compared in order to identify pathways of relevance that are either convergent across both species, or show
significant divergence between humans and mice. In general, metabolite fold increase or decrease is compared between human and
mouse phenotypes using 2-way ANOVA, and multiple comparisons controlled using false discovery. Dimensionality reduction is achieved
using principal components analysis.
Results: Metabolomic analysis identifies over 300 different metabolites, and many more unknown compounds. Some biochemical
pathways are convergent between humans and mice, whereas others are restricted to a single species. Data will be shown using a
heatmap (fold change) diagram, and annotated Venn diagrams of overlapping pathway significance.
Conclusions: We are conducting comparative biological investigations of persistent pain phenotypes in two evolutionarily distant species
in order to detect pathways of biological relevance following peripheral nerve injury. We will use these data to inform further proteomic and
genomic experiments probing ever deeper into the preserved, but maladapted, inflammatory response to nerve injury.

SUMMARY:
We present a comparative biological study of the human and murine plasma metabolomic response to peripheral nerve injury.

Status: Complete



Veterans Integrated Pain Evaluation Research (VIPER): 
 Post-amputation Pain Phenotypes in Injured Military Service Personnel 

 
Thomas Buchheit MD, Thomas VandeVen MD PhD, Mary McDuffie RN, Hung-Lun John Hsia MD, 

COL Chester “Trip” Buckenmaier MD, and Andrew Shaw MB FRCA 

 
Background 

 
Post-amputation pain is present in more than 50% of injured military service members after amputation.1 

Although distinct pain syndromes such as neuroma and complex regional pain syndrome have been described2,3, most 
studies discriminate only between phantom and residual limb pain.4 Similar to advances that have been made with 
other chronic diseases after diagnostic improvements,5 classifying pain phenotypes may ultimately lead to more 
disease-specific and effective therapies. With this goal, we are performing a collaborative study (Veterans Integrated 
Pain Evaluation Research (VIPER)) between Duke University and Walter Reed National Military Medical Center 
(WRNMMC) of injured military service personnel who have undergone previous traumatic amputation. We report the 
assessment and phenotypic adjudication of the first 15 patients enrolled in VIPER, who represent the initial pilot 
cohort. 

 
METHODS 
 
 

 
 
 
 
 
After IRB approval, the VIPER pilot clinical cohort was assessed using several well established and validated 
questionnaire instruments including the Brief Pain Inventory (BPI), Self-Reported Leeds Assessment of Neuropathic 



Symptoms and Signs Pain Scale (S-LANSS), Complex Regional Pain Syndrome questions (Budapest Clinical Criteria) 
phantom and residual limb pain questionnaires.  
 
These questionnaire instruments were applied to each case as part of a formal endpoint adjudication process as 
required by the VIPER protocol in order to discriminate between distinct pain phenotypes. Using an algorithm 
previously reported by our group 4, phantom pain was first distinguished, and subsequently, residual limb pain was 
sub-categorized into 1) Somatic 3) Neuroma/Neuritis 4) CRPS or 5) Mosaic Neuralgia (neuropathic pain not otherwise 
specified).  
 
RESULTS 
 
Using these validated assessment tools, we were able to successfully discriminate between multiple categories of 
post-amputation pain in this preliminary cohort. We found that 86% described phantom pain, 13% noted residual 
limb somatic pain, 33% residual limb neuroma pain, 7% residual limb CRPS pain, and 20% described neuralgic limb 
pain not otherwise specified (Mosaic neuralgia). Importantly, there was significant overlap between phantom limb 
pain and residual limb neuralgic pain. 
 

 

Summary 
This preliminary research describes significant phenotypic complexity within the post-amputation pain syndromes, 
including several different subtypes of residual limb neuropathic pain. Further cohort analyses will allow for better 
diagnostic discrimination between post-amputation pain subtypes, and may facilitate targeted future therapies.  
 

1. Reiber GE, McFarland LV, Hubbard S, et al. Servicemembers and veterans with major traumatic limb loss from 
Vietnam war and OIF/OEF conflicts: survey methods, participants, and summary findings. J Rehabil Res Dev. 
2010;47(4):275-297. 

2. Sehirlioglu A, Ozturk C, Yazicioglu K, Tugcu I, Yilmaz B, Goktepe AS. Painful neuroma requiring surgical excision 
after lower limb amputation caused by landmine explosions. International orthopaedics. Apr 2009;33(2):533-536. 

3. Isakov E, Susak Z, Korzets A. Reflex sympathetic dystrophy of the stump in below-knee amputees. The Clinical 
journal of pain. Sep 1992;8(3):270-275. 

4. Lindsay DR, Pyati S, Buchheit TE, Shaw A. Residual limb pain: more than a single entity? Anesthesiology. Jan 
2012;116(1):224. 

5. Jaglowski S, Jones JA. Choosing first-line therapy for chronic lymphocytic leukemia. Expert Rev Anticancer Ther. Sep 
2011;11(9):1379-1390. 
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Dexamethasone Attenuates Neuropathic Pain Behavior 
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Introduction 

• Neuropathic pain is a common complication of nerve injury.  

• Proposed mechanisms include both local and systemic inflammation. 

• Dexamethasone is a known anti-inflammatory agent often used in the operating room. 

• Plasma metabolomics are a useful cross-species pathway discovery tool. 

Hypotheses 

• Dexamethasone attenuates the development of neuropathic pain behavior 

• Spared nerve injury and treatment with dexamethasone cause reproducible metabolic changes 

• Differentially regulated metabolites can serve as biomarkers of pain susceptibility and can inform pathway 

discovery. 

Methods 

• After IACUC approval, 30 C57/BI6 mice were randomly allocated into three groups:   

• Spared nerve injury (SNI), N=10 

• Sham surgery, N=10  

• Dexamethasone/SNI, N=10 

• Mechanical withdrawal threshold was measured using an electronic von Frey anesthesiometer. 

• Blood plasma was obtained and unbiased metabolomics performed at Metabolon, Inc. 

Results 

• The SNI group showed a statistically significant (P < 0.01) decrease in paw withdrawal threshold (PWT) on the surgical 

hind paw compared with sham.  

• Compared to the SNI group, the treatment group demonstrated statistically significant (P < 0.01) increases in PWT. 

• 51 metabolites are differentially regulated in sham vs. SNI operated mice. (p < 0.05 FDR corrected) 

• 177 metabolites are differentially regulated between SNI and SNI/Dexamethasone treated mice. (p<0.05 FDR corrected) 

• Multivariate analysis shows significant differential clustering of all three experimental groups 

Conclusions 

• Dexamethasone attenuates neuropathic pain behavior. 

• SNI and dexamethasone treatment produce reproducible metabolic changes in mice. 

Supported by NIH T32 #2T32GM008600-16 and DMRDP Grant #DM102142 

Figure 1: Analysis by two way ANOVA for time 

and treatment 

Figure 4: Metabolite concentration box plots Figure 5: PLS-DA score plot showing 

class separation 
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Figure 3: Metabolomics Study Overview 
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Introduction 

• Neuropathic pain is a common complication of nerve injury.  

• Proposed mechanisms include NMDA receptor mediated central sensitization. 

• It is unclear whether a preoperative subanesthetic dose of ketamine can prevent 

chronic pain 

Hypothesis 

• We hypothesized that ketamine would attenuate the development of neuropathic 

pain behavior in a mouse model.  

Methods 

• After IACUC approval, 30 C57/BI6 mice were randomly allocated into three 

groups:   

• Spared nerve injury (SNI), N=10 

• Sham surgery, N=10  

• Ketamine/SNI, N=10 

• Mechanical withdrawal threshold was 

     measured using an electronic von Frey 

     anesthesiometer. 

Conclusions 

• A one-time, preoperative, subanesthetic dose of ketamine attenuates neuropathic pain 

behavior. 
 
References 
1. Shields S, Eckert W, Basbaum A. The Journal of Pain, Vol. 4, No 8: pp 465-470 
2. Mogil J, Graham A, Ritchie J, Hughes S, Austin J, Schorscher-PetCu A, Bennett G.  Molecular Pain 2010, 6:34.  
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 Figure: Withdrawal threshold vs post-operative day. Analysis by repeatedmeasures 
ANOVA with Tukey post-hoc analysis. 
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Results 

• The SNI group showed a 

statistically significant (P < 0.01) 

decrease in paw withdrawal 

threshold (PWT) on the surgical 

hind paw compared with sham.  

• Compared to the SNI group, the treatment group demonstrated statistically 

significant (P < 0.01) increases in PWT. 
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Interspecies Plasma Metabolomics - Candidate Pain Pathway Prioritization  
Hung-Lun John Hsia MD, Thomas VandeVen MD PhD, Thomas Buchheit MD, Joseph Lucas PhD, Mary McDuffie RN, Chester 

Buckenmaier MD, and Andrew Shaw MB FRCA 
Department of Anesthesiology, Duke University Medical Center, Walter Reed National Military Medical Center, Durham Veterans Affairs Medical Center 

Background: 

Methods:  

Conclusions: 

References: 
  

Persistent pain after surgical nerve damage is a significant problem, affecting patients 
undergoing many different procedures.  The biological pathways responsible are poorly 
characterized, and little progress has been made in the field of novel analgesic 
development.  In order to prioritize the biological pathways of relevance we have 
compared the plasma metabolomes of humans with and without persistent pain after 
surgical amputation and C57/BI6 mice undergoing spared nerve injury.  We hypothesize 
that pathways that are demonstrably important in both species represent high priority 
candidates for further mechanistic study and therapeutic target discovery.  

After IACUC approval, 30 C57/BI6 mice were randomly allocated into three groups: 

• Sham surgery, N=5 

• Spared Nerve Injury (SNI), N=15 

• Dexamethasone/SNI, N=5 

Observation of greatest phenotypic difference (paw withdrawal threshold levels) occurred on POD 
15.  At that time plasma was drawn from all mice and flash frozen at -80C and sent off for 
metabolic analysis.   

 

After IRB approval and acquired consent, fifteen patients were selected from the Veterans 
Investigative Pain Evaluation Research (VIPER) cohort group and allocated to two groups based 
on a formal ajudication process to differentiate clinical pain phenotypes.  This process placed 
them into two distinct groups: 

• Control group, N=9 

• Case group, N=6 

Both groups received surgical amputations.  The case group consisted of patients with the most 
severe pain scores.  In contrast, the control group exhibited the lowest pain scores.    

DUKE 
Extraordinary Care – Through a Culture of Innovation 

Fig 1:  The figures above are score plots demonstrating the separation of differential metabolic profiles between 
groups in both mouse and humans.  (A) Mouse sham surgery group (red dots) separated from nerve ligation 
group (green dots).  (B) Human control group (red dots) separated from case group (green dots) 

Mouse Human 

A B 

Results: 
In mouse, 583 metabolites were analyzed and quantified, consisting of 345 named and 238 
unnamed biochemicals.  In humans, 658 metabolites, consisting of 363 named and 295 
unnamed biochemicals, were analyzed.  Plot scores demonstrate clear metabolic profile 
separation between groups in both human and mouse.   

Table 1: One way ANOVA analysis demonstrating significant differences in biochemical species between groups   

Table 2: Welch’s  Two Sample t-Test demonstrating 
significant differences between the two human groups.   

There were significant differences in the metabolic profiles between groups in both mouse and humans.  
Also, there is preserved cross-species differential expression of specific metabolic products.   
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Fig 2: The graphs above demonstrate an identical biochemical species in both mouse and human which is down-regulated in nerve injury pain  



Veterans Integrated Pain Evaluation Research (VIPER): 
 Post-Amputation Pain Phenotypes in Injured Military Service Personnel 
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Background 

Methods 
Phenotypic Assignment 

Results 

Conclusions 

References 

•  Chronic pain is a common problem in injured military service members undergoing 
amputation.1  

•  Most studies of post-amputation pain only discriminate phantom and residual limb pain.2  
•  Sub-classification of pain phenotypes is a likely important step in the development of disease-

specific therapies.  
•  A collaborative study (Veterans Integrated Pain Evaluation Research (VIPER)) between Duke 

University, Walter Reed National Military Medical Center (WRNMMC) and the Durham VAMC 
is being conducted to further define post-amputation clinical phenotypes and to correlate 
these findings with circulating biomarkers of persistent pain.  

•  Here we report on the initial cohort of 41 military service members who have undergone 
clinical assessment and phenotypic adjudication. 

After IRB approval, the VIPER clinical 
cohort was assessed using validated 
questionnaire instruments: 
•  Brief Pain Inventory (BPI) 
•  Self-Reported Leeds Assessment of 

Neuropathic Symptoms and Signs 
Pain Scale (S-LANSS) 

•  Complex Regional Pain Syndrome 
(Budapest Clinical Criteria) 

•  Phantom and residual limb pain 
questionnaires 

•  A formal endpoint adjudication was 
performed using the algorithm 
previously reported by our group3 
•  Phantom and residual limb pain 

were discriminated. 
•  Residual limb pain was then sub-

categorized into a) Neuroma b) 
CRPS c) Mosaic Neuralgia or d) 
Somatic. 

•  Using the Duke Post-Amputation Pain Algorithm (Duke PAPA), we discriminated 
between several post-amputation pain subtypes in this preliminary cohort of 
military service members.  

•  We found an overall incidence of post-amputation pain of 61%.   
•  56% described phantom pain 
•  56% described residual limb pain (RLP) 
•  There was significant overlap with these diagnoses, but they did not always 

co-exist 

•  Of those subjects with RLP the following diagnostic categories were noted: 
•  70% neuroma 
•  22% CRPS 
•  13% Mosaic neuralgia (neuralgic pain not otherwise specified) 
•  17% somatic 

 
•  We additionally observed that the use of regional anesthesia catheters at the 

time of injury is associated with a decreased incidence of post-amputation pain 
during our assessment.  
•  This effect appears secondary to reductions in residual limb pain, but not 

reductions in phantom pain. 

•  We observed phenotypic complexity of post-amputation pain symptoms in this initial cohort 
including: 
•  Significant but not complete overlap in the diagnoses of phantom and residual limb pain 
•  Several distinct subtypes of residual limb neuropathic pain 
•  A predominant contribution of neuroma symptoms in service members with residual 

limb pain 
•  We additionally observed that the use of regional anesthesia catheters at the time of injury 

is associated with a decreased incidence of chronic pain during our assessment. 

1.  Reiber GE, McFarland LV, Hubbard S, et al. Servicemembers and veterans with major traumatic limb loss from Vietnam war and 
OIF/OEF conflicts: survey methods, participants, and summary findings. J Rehabil Res Dev. 2010;47(4):275-297. 

2.  Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees: 
results of a national survey. Arch Phys Med Rehabil. Oct 2005;86(10):1910-1919. 

3.  Lindsay DR, Pyati S, Buchheit TE, Shaw A. Residual limb pain: more than a single entity? Anesthesiology. Jan 2012;116(1):224. 
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Post Amputation Phenotype Adjudication

Phantom Pain Residual Limb Pain

No Pain

Somatic Neuropathic

Neuroma
CRPS

Mosaic Neuralgia

S-Lanss >12
Somatic pathology 

or S-Lanss <12

Positive Tinel's
Does not meet other criteria

Budapest 
Clinical 
Criteria

Pain

CRPS Budapest Clinical Criteria: Symptoms in ¾ of the following categories:        Sensory 
(hyperalgesia or allodynia),        Vascular (temperature, skin color),      Sweating/Edema, 
and       Motor (weakness, tremor dystonia)/Trophic (hair, skin). 

Physical exam signs in 2/4 of the following categories:     Sensory (allodynia),       Vascular,                                                  
Sweating/Edema, or       Motor/Trophic.

Pain in missing limb

S-LANSS Indicator >2

Pain in residual limb
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Veterans Integrated Pain Evaluation Research (VIPER): 
 Post-Amputation Pain Phenotypes in Injured Military Service Personnel 
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Background 

Methods 
Phenotypic Assignment 

Results 

Conclusions 

References 

•  Chronic pain is a common problem in injured military service members undergoing 
amputation.1  

•  Most studies of post-amputation pain only discriminate phantom and residual limb pain.2  
•  Sub-classification of pain phenotypes is a likely important step in the development of disease-

specific therapies.  
•  A collaborative study (Veterans Integrated Pain Evaluation Research (VIPER)) between Duke 

University, Walter Reed National Military Medical Center (WRNMMC) and the Durham VAMC 
is being conducted to further define post-amputation clinical phenotypes and to correlate 
these findings with circulating biomarkers of persistent pain.  

•  Here we report on the initial cohort of 41 military service members who have undergone 
clinical assessment and phenotypic adjudication. 

After IRB approval, the VIPER clinical 
cohort was assessed using validated 
questionnaire instruments: 
•  Brief Pain Inventory (BPI) 
•  Self-Reported Leeds Assessment of 

Neuropathic Symptoms and Signs 
Pain Scale (S-LANSS) 

•  Complex Regional Pain Syndrome 
(Budapest Clinical Criteria) 

•  Phantom and residual limb pain 
questionnaires 

•  A formal endpoint adjudication was 
performed using the algorithm 
previously reported by our group3 
•  Phantom and residual limb pain 

were discriminated. 
•  Residual limb pain was then sub-

categorized into a) Neuroma b) 
CRPS c) Mosaic Neuralgia or d) 
Somatic. 

•  Using the Duke Post-Amputation Pain Algorithm (Duke PAPA), we discriminated 
between several post-amputation pain subtypes in this preliminary cohort of 
military service members.  

•  We found an overall incidence of post-amputation pain of 61%.   
•  56% described phantom pain 
•  56% described residual limb pain (RLP) 
•  There was significant overlap with these diagnoses, but they did not always 

co-exist 

•  Of those subjects with RLP the following diagnostic categories were noted: 
•  70% neuroma 
•  22% CRPS 
•  13% Mosaic neuralgia (neuralgic pain not otherwise specified) 
•  17% somatic 

 
•  We additionally observed that the use of regional anesthesia catheters at the 

time of injury is associated with a decreased incidence of post-amputation pain 
during our assessment.  
•  This effect appears secondary to reductions in residual limb pain, but not 

reductions in phantom pain. 

•  We observed phenotypic complexity of post-amputation pain symptoms in this initial cohort 
including: 
•  Significant but not complete overlap in the diagnoses of phantom and residual limb pain 
•  Several distinct subtypes of residual limb neuropathic pain 
•  A predominant contribution of neuroma symptoms in service members with residual 

limb pain 
•  We additionally observed that the use of regional anesthesia catheters at the time of injury 

is associated with a decreased incidence of chronic pain during our assessment. 

1.  Reiber GE, McFarland LV, Hubbard S, et al. Servicemembers and veterans with major traumatic limb loss from Vietnam war and 
OIF/OEF conflicts: survey methods, participants, and summary findings. J Rehabil Res Dev. 2010;47(4):275-297. 

2.  Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees: 
results of a national survey. Arch Phys Med Rehabil. Oct 2005;86(10):1910-1919. 

3.  Lindsay DR, Pyati S, Buchheit TE, Shaw A. Residual limb pain: more than a single entity? Anesthesiology. Jan 2012;116(1):224. 
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No Pain
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Neuroma
CRPS

Mosaic Neuralgia

S-Lanss >12
Somatic pathology 

or S-Lanss <12

Positive Tinel's
Does not meet other criteria

Budapest 
Clinical 
Criteria

Pain

CRPS Budapest Clinical Criteria: Symptoms in ¾ of the following categories:        Sensory 
(hyperalgesia or allodynia),        Vascular (temperature, skin color),      Sweating/Edema, 
and       Motor (weakness, tremor dystonia)/Trophic (hair, skin). 

Physical exam signs in 2/4 of the following categories:     Sensory (allodynia),       Vascular,                                                  
Sweating/Edema, or       Motor/Trophic.

Pain in missing limb

S-LANSS Indicator >2

Pain in residual limb
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Introduction 
•  We are studying combat amputation injury in OIF/

OEF/OND personnel 
•  Our overarching goal is to identify novel biomarkers 

of amputation pain subtypes and better define the 
mechanisms involved in the transition from acute to 
chronic nerve injury pain 

•  Here we report summary clinical data from our pilot 
cohort 

 

Patients 
•  41 subjects with traumatic amputation have been 

enrolled since January 2012 
•  All sustained a traumatic injury leading to loss of a 

limb 
•  Data are collected between 3 and 18 months after 

initial injury in theater 
 

Endpoints 
•  We collect pain type and severity data using the 

following instruments: 
•  BPI, S-LANSS, PHQ 9, PCS, VAS, PTSD-M 

Total N = 41 Controls 
(mean) 

Cases 
(mean) 

P value 

Regional 
anesthesia 

catheter used (%) 

31.2 16 NS 

Ever smoker (%) 81.2 32 <0.05 
Age 25 26 NS 
BMI 25.7 26.6 NS 

S-LANSS total 10 14 <0.05 
S-LANSS indicator 0.88 4.48 <0.001 

VAS (0-100) 4 24 0.001 
PTSD total 28.9 37.8 <0.05 
BPI worst 1 4 <0.05 

BPI interfere 0.5 2.3 <0.05 
PCS total 3 10 0.01 

Stump pain (%) 0 56 <0.001 
Phantom pain (%) 0 56 <0.001 

Results 
•  There is a clear relationship between perceived 

impact of pain on quality of life and severity of PTSD 
symptoms 

•  This is independent of whether the pain is residual 
limb type or phantom 

Comment 
•  This study, and the newly funded follow on 

intervention study, will provide detailed data 
regarding the epidemiology and molecular 
characteristics of the different subtypes of post 
amputation pain in military service personnel. 

Supported by DMRDP Grant #DM102142 

Control = S LANSS <3 
Case = S LANSS >2 
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Introduction 
• We are studying combat amputation injury in OIF/

OEF/OND personnel
• Our overarching goal is to identify novel biomarkers

of amputation pain subtypes and better define the
mechanisms involved in the transition from acute to
chronic nerve injury pain

• Here we report summary clinical data from our pilot
cohort

Patients 
• 41 subjects with traumatic amputation have been

enrolled since January 2012
• All sustained a traumatic injury leading to loss of a

limb
• Data are collected between 3 and 18 months after

initial injury in theater

Endpoints 
• We collect pain type and severity data using the

following instruments:
• BPI, S-LANSS, PHQ 9, PCS, VAS, PTSD-M

Total N = 41 Controls 
(mean) 

Cases 
(mean) 

P value 

Regional 
anesthesia 

catheter used (%) 

31.2 16 NS 

Ever smoker (%) 81.2 32 <0.05 
Age 25 26 NS 
BMI 25.7 26.6 NS 

S-LANSS total 10 14 <0.05 
S-LANSS indicator 0.88 4.48 <0.001 

VAS (0-100) 4 24 0.001 
PTSD total 28.9 37.8 <0.05 
BPI worst 1 4 <0.05 

BPI interfere 0.5 2.3 <0.05 
PCS total 3 10 0.01 

Stump pain (%) 0 56 <0.001 
Phantom pain (%) 0 56 <0.001 

Results 
• There is a clear relationship between perceived

impact of pain on quality of life and severity of PTSD
symptoms

• This is independent of whether the pain is residual
limb type or phantom

Comment 
• This study, and the newly funded follow on

intervention study, will provide detailed data
regarding the epidemiology and molecular
characteristics of the different subtypes of post
amputation pain in military service personnel.

Supported by DMRDP Grant #DM102142 
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Genome wide DNA methylation analysis in amputees with chronic residual limb pain reveals 
significant epigenetic regulation of the MAPK pathway. 

Alex Kieber BS, Thomas VandeVen MD PhD, Thomas Buchheit MD, Mary McDuffie RN, Chester Buckenmaier MD, Simon Gregory 
PhD, and Andrew Shaw MB FRCA 

Department of Anesthesiology, Duke University Medical Center, Walter Reed National Military Medical Center, Durham Veterans Affairs Medical Center 

Background: 

Methods:  

Conclusions: 

References: 

• Persistent pain after surgical nerve damage is a significant problem, affecting patients 
undergoing many different procedures.  The biological pathways responsible are poorly 
characterized, and little progress has been made in the field of novel analgesic 
development.   
 

• In order to prioritize the biological pathways of relevance we have collected blood samples 
from 80 recent active duty soldiers who have undergone amputation.  

 

• After IRB approval, detailed phentoypic 
data and blood samples for extraction of 
DNA and RNA were collected from 80 
soldiers with recent amputations at Walter 
Reed National Military Medical Center. 
 

• Blood was collected into PAXgene RNA 
and PAXgene DNA tubes and DNA and 
RNA were extracted using Qiagen 
PAXgene RNA and DNA extraction kits.  
 

• DNA was bisulfite converted and applied to 
the Illumina 450K human methylation array 
revealing the methylation state of 485,000 
CpG loci throughout the genome. 
 

• Data analysis was performed using the 
Illumina’s Genome Studio software and the 
R-based methylation array analysis module 
MethLAB1.  
 

• Pathway discovery was performed using 
the  DAVID functional annotation tool2. 

DUKE 
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IL17R 

INSL3 

• Genome wide, unbiased DNA 
methylation analysis was conducted on 
DNA extracted from the blood of each 
soldier. 
 

• Functional annotation and pathway 
mapping was performed to find 
pathways with multiple differentially 
methylated components between 
amputees with and without pain. 

 Figure 1: Epigenetic modifications include histone acetylation, DNA 
methylation and miRNA dependent RNA degradation  

Figure 2: Illumina Infinium 450K DNA methylation array. 
Methylated cytosine does not become thymine after bisulfite 

conversion.  

Figure 2: Gene promoter regions most significantly differentially methylated between 
amputees with and without pain (MAPK pathway members highlighted in blue) 

Figure 4: Differentially methylated genes and their position in the MAPK pathway (KEGG) 

Figure 3: Most highly represented pathways from the 
list of differentially methylated genes between groups   

Number of differentially methylated genes per pathway 

Type I DM 

Focal Adhesion 

Purine Metabolism 

ECM receptor 
interaction 

Regulation of Actin 
Cytoskeleton 

MAPK signaling 

Results: 
• After QC/normalization and Δβ determination 

using Illumina Genome Studio software, 81 
genes with promoter regions showing 20% or 
greater differential methylation between groups 
were identified. The most significant genes (by p-
value) are listed in Figure 2. Results were 
confirmed using the Methlab R-based module. 
 

• The 34 most significant differentially methylated 
genes were entered into the DAVID 
bioinformatics functional annotation tool and the 
most highly represented pathways are listed in 
figure 3 with the MAPK pathway most highly 
represented. 
 

• The eight genes differentially methylated 
between groups are shown within the KEGG3 
derived MAPK pathway (Figure 4). 
 

• The MAPK pathway is well-known as an important regulator of the transition from acute to chronic pain4. 
• Soldier amputees with and without chronic pain 3-18 months after surgery or trauma show significant 

differences in gene promoter methylation of multiple MAPK pathway genes. 
• Gene expression analysis is ongoing and will allow correlation between methylation and expression for 

each of these genes of interest. 
• The timing of this differential methylation is unknown but may be clarified by the VIPER Valproate study 

that includes collection of DNA samples before and after amputation. 
 
 

• 1. MethLAB software – Killaru et al. Epigenetics. 2012 Mar;7(3):225-9.  
• 2. DAVID - http://david.abcc.ncifcrf.gov/summary.jsp 
• 3. KEGG MAPK pathway - http://www.genome.jp/kegg/pathway/hsa/hsa04010.html 
• 4. Ji, RR. Suter, MR. Molecular Pain 2007, 3:33 

 
  Grant support:   1.) DOD CDMRP DM102142    VIPER: Veteran’s Integrated Pain Evaluation Research 
     2.) NIH T32 T32 2T32GM008600-16    Integrated Training in Anesthesiology Research 
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Regional Anesthesia Catheters Reduce the Incidence of Neuropathic Post-Amputation Pain: 
Results from the VIPER Cohort of Injured Military Personnel 

Hung-Lun J. Hsia MD, Thomas Buchheit MD, Thomas Van de Ven MD PhD, David MacLeod, MB FRCA, Mary McDuffie RN, William White 
MS, COL Chester “Trip” Buckenmaier MD, and Andrew Shaw MB FRCA 

Departments of Anesthesiology, Duke University Medical Center, Walter Reed National Military Medical Center, and Durham Veterans Affairs Medical Center 

Background 

Methods 
Phenotypic Assignment 

Results 

Conclusions 

References 

• Chronic pain is a common problem in injured military service members undergoing
amputation.1

• Most studies of post-amputation pain only discriminate phantom and residual limb pain.2

• Sub-classification of pain phenotypes is an important step in the development of disease-
specific therapies.

• An ongoing collaborative study (Veterans Integrated Pain Evaluation Research (VIPER))
between Duke University, Walter Reed National Military Medical Center (WRNMMC) and the
Durham VAMC is being conducted to further define post-amputation clinical phenotypes and
discover circulating biomarkers of persistent pain.

• Here we make a report on 124 military service members who have undergone clinical
assessment and phenotypic adjudication.

After IRB approval, the VIPER clinical 
cohort was assessed using validated 
questionnaire instruments: 
• Brief Pain Inventory (BPI)
• Self-Reported Leeds Assessment of

Neuropathic Symptoms and Signs
Pain Scale (S-LANSS)

• Complex Regional Pain Syndrome
(Budapest Clinical Criteria)

• Phantom and residual limb pain
questionnaires

• A formal endpoint adjudication was
performed using the algorithm
previously reported by our group3

• Phantom and residual limb pain
were discriminated.

• Residual limb pain was then sub-
categorized into a) Neuroma b)
CRPS c) Mosaic Neuralgia or d)
Somatic.

• Using the Duke Post-Amputation Pain Algorithm (Duke PAPA), we discriminated
between several post-amputation pain subtypes in military service members.
• We found an overall incidence of post-amputation pain (PAP) of 64.5%.
• When these PAP cases were further sub-categorized:

• 90% described phantom pain
• 95% described residual limb pain (RLP)
• There was significant overlap with these diagnoses, but they did not

always co-exist

• Furthermore, of those subjects with RLP the following diagnostic categories
were noted:
• 46.3% neuroma
• 18.8% CRPS
• 10% Mosaic neuralgia (neuralgic pain not otherwise specified)
• 38.8% somatic

• In our analysis of retrospective catheter placement data, we found a significantly
decreased incidence of neuropathic pain in patients receiving regional catheters
within 7 days of injury.

• We observed phenotypic complexity of post-amputation pain symptoms in this cohort
including:
• Strong overlap in the diagnoses of phantom and residual limb pain
• Several distinct subtypes of residual limb neuropathic pain
• A predominant contribution of neuroma symptoms in service members with residual

limb pain

• Additionally, we observed that the use of early regional anesthesia catheters was
associated with a decreased incidence of chronic neuropathic pain.

1. Reiber GE, McFarland LV, Hubbard S, et al. Servicemembers and veterans with major traumatic limb loss from Vietnam war and
OIF/OEF conflicts: survey methods, participants, and summary findings. J Rehabil Res Dev. 2010;47(4):275-297.

2. Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees:
results of a national survey. Arch Phys Med Rehabil. Oct 2005;86(10):1910-1919.

3. Lindsay DR, Pyati S, Buchheit TE, Shaw A. Residual limb pain: more than a single entity? Anesthesiology. Jan 2012;116(1):224.
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Supported by Department of Defense (DM102142) Figure 1: Adjudication algorithm utilized to assign patients to their respective 
groups. 

Figure 2:  
Phenotypic variation in post-amputation pain demonstrating significant overlap between residual limb pain 
and phantom limb pain.  Also, there is substantial overlap between RLP-Neuroma and RLP-CRPS  
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Figure 3: Regional Catheter use and decreased incidence of pain with varying timeframes of placement.  The * 
denotes statistical significance.      



More than Mere Detergents: An Interspecies Study Reveals Bile Acids as Novel 
Mediators in Acute and Chronic Pain  
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Introduction 

Conclusions 
• Interspecies metabolomics can be used to generate novel, 

productive leads for pain research 
• The bile acid pathway is differentially regulated in pain and non-

pain states in mice and humans 
• Acute administration of deoxycholate produces analgesia to acute 

nociceptive stimuli as well as in a chronic, neuropathic pain model 
• One part of the overall the mechanism of deoxycholate-mediated 

analgesia in the chronic setting may be the inhibition of astroycyte 
contribution to the central sensitization and neuropathic pain. 

References and Notes: 

• Persistent pain after surgical nerve damage is a significant problem, 
affecting patients undergoing many different procedures1.  The 
biological pathways responsible are poorly characterized, and little 
progress has been made in the field of novel analgesic development.  

• We initiated an exploratory, interspecies (human and mouse) 
investigation to identify novel pathways and mediators in the 
transition of acute to chronic pain.  

• These exploratory efforts revealed several bile acids (deoxycholate, 
cholate) to be differentially regulated in pain and non-pain states in 
humans and mice 

 
 

Metabolomics 
• After IACUC approval, 30 C57/BI6 mice were randomly allocated into three groups: 

• Sham surgery, N=5 
• Spared Nerve Injury (SNI), N=15 
• Dexamethasone/SNI, N=5 

• At POD15 plasma was drawn from all mice and flash frozen at -80C and sent for 
metabolic analysis. 

• Fifteen patients were selected from the Veterans Investigative Pain Evaluation 
Research (VIPER) cohort group and adjudicated into two groups representing 
extreme phenotypes.   
• Control, SLANSS <3 
• Case, SLANSS >2 

• Data analysis performed using Metaboanalyst 2.02 
Behavioral Testing 
• Male CD-1 mice were used for all behavioral testing 

• Naïve or Chronic Constriction Injury (CCI) 
• Deoxycholate (DCA) was administered either via the intrathecal or intraplantar route 
• Mechanical sensibility was assessed with von Frey filaments method (ref?) after 

treatment with DCA 
• Acute, chemo-nociception was assayed using the capsaicin test after treatment with 

DCA 
• Intraplantar injection of 1 ng of capsaicin 
• Nocifensive behavior analyzed by video recording 

Tissue Culture  
• Astrocytes were harvested from p3 neonatal mice (C57/Bl6) and co-cultured with 

microglia for 3 weeks  
• 3 days before testing with bile acid compounds, astrocytes were plated into 12-well 

plates and differentiated with cAMP (ref) 
• Pre-treated for 1 hour with bile acid and then stimulated with the cytokine TNF-alpha (10 

ng/ml) 
• Supernatants collected and assayed for MCP-1 levels by ELISA 

• 1. Kehlet, H., Jensen, T.S., and Woolf, C.J. (2006). The Lancet 367, 1618–1625. 
• 2 Xia, J., Mandal, R., Sinelnikov, I., Broadhurst, D., and Wishart, D.S. (2012) Nucl. Acids Res. 
• 3. Gao, Y.J. et al.. (2009) Journal of Neuroscience 29, 4096–4108. 
• 4. Behavioral testing performed by Sarah Taves, PhD 
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Materials and Methods  

    

    

* 

Results 

Figure 1. Metabolomic analysis of mouse and human 
plasma converges on the bile acid pathway. Deoxycholate 
and cholate differed significantly between pain and non-pain 
states in both mice and humans. (A) CTRL = Sham (N=5), 
INT = Spared Nerve Injury (SNI) (N=15), TRT = 
SNI/Dexamethasone (N=5). (B). CTRL = SLANSS < 3, CASE 
= SLANSS >2 

A 

B 

Figure 2. Deoxycholate produces analgesia to acute 
mechanical and chemical stimuli in naïve CD-1 mice. (A) 
Intraplantar injection of DCA (25 ug) reduces paw withdrawal 
frequency to a 0.6g von Frey filament. p=0.02 by 2-way ANOVA. 
(B) Intrathecal injection of DCA (1h pretreatment) attenuates the 
nocifensive response to capsaicin. * signifies p < 0.05 by 
Student t-test.  

A B 

Figure 3. Intrathecal deoxycholate alleviates mechanical 
allodynia in the chronic constriction injury model at 21 d 
(late) but not 7 d (early)4 .  * p < 0.05 by Student t-test.  
 

Saline n=6 
DCA n=6 

Saline n=8 
DCA n=7 

Saline n=5 
DCA n=6 

Figure 4. Deoxycholate reduces  the release of the 
chemokine MCP-1 by astrocytes stimulated with TNF in 
vitro. Astrocytes release MCP-1, which contributes to central 
sensitization and neuropathic pain. Blocking MCP-1 has been 
shown to attenuate neuropathic pain in mice.3 



Study Design: 

Results:  Case subjects exhibited higher serum levels of the pro-
inflammatory mediators TNF, IL-8, TNF-β, CRP, SAA, and Tie-2, and the anti-
inflammatory mediator IL-10, compared to control group values. 

Although these differences were statistically significant individually (p<0.05), 
they did not withstand multiple comparison correction.  

Inflammatory Biomarkers in Patients with Persistent Post-operative Pain after Amputation 
Matthew Mauck, MD PhD1; Alexander Chamessian1; John Hsia, MD1; Jacqueline Zillioux1, David MacLeod, MB BS1; Thomas Buchheit, MD1; Chester “Trip” Buckenmaier III, 

MD2; Andrew Shaw, MB BS3, Thomas Van de Ven, MD PhD1 
1Department of Anesthesiology, Duke University Medical Center and Durham VA Medical Center, Durham, NC 27710, USA 

2Department of Anesthesiology, Walter Reed Medical Center, Uniform Services University 
3Division of Cardiothoracic Anesthesiology, Department of Anesthesiology, Vanderbilt University Medical Center 

Abstract: 
•Persistent post-operative pain is one of the most feared outcomes in perioperative
medicine. 
•Patients undergoing amputation have a greater than 40% incidence of persistent
pain after surgery 
•10% of those have pain that significantly alters functional status.
•The question of how acute post-surgical pain becomes chronic after amputation
remains unresolved. 
•In a post-amputation population, we explored the changes in plasma cytokine
concentration that reflect systemic inflammatory state. 

Methods: 
•We used plasma samples from a prospective, cohort study that enrolled patients 3-
18 months after amputation. 
•Patients underwent objective pain testing, examination and blood sampling at the
time of enrollment. 

•Patients with a SLANSS pain severity score of ≥2 were categorized as cases and
patients with a pain severity score of <2 were considered controls by a physician 
adjudication panel. 
•Plasma samples from the VIPER (Veterans Integrated Pain Experience Research)
study were analyzed with a high-sensitivity enzyme-linked immunoassay (ELISA) for 
37 soluble biomarkers including chemokines and cytokines that are involved in 
neuroinflammation. 

Results:  
•There were several correlations between SLANSS severity score and Visual Analog
Scale (VAS) score that remained significant even after adjustment for multiple 
comparisons.  
•TNF-b and ICAM-1 were positively correlated with SLANSS score, while IL-13 exhibited a
negative correlation. 
•TNF and TNF-b were both positively correlated with VAS score.

Conclusion: 
• Systemic inflammation after amputation is potentially a driver for the transition of acute
pain to chronic pain. We observed an overall increase in inflammatory cytokines in cases 
versus control, suggesting that systemic inflammation has a role in the development and 
maintenance of persistent pain after amputation.  
•We observe a negative correlation between SLANSS severity score, an indicator of
neuropathic pain, and IL-13 indicating that anti-inflammatory cytokines may be protective 
in the development of chronic pain after amputation.  
•This data has led us to hypothesize that pro-inflammatory cytokines drive persistent pain
while anti-inflammatory cytokines, such as IL-13, serve a protective role. We additionally 
found elevations of ICAM-1 in cases relative to controls and a positive correlation with S-
LANSS severity score, suggesting that leukocyte trafficking may enhance neuropathic pain 
phenotype. 
•These results, while interesting, need follow-up in a larger scale, prospective study and
validation in animal models of persistent pain before these biomarkers are seen as 
heralding chronic pain after surgery.  



Regional Anesthesia Catheters Reduce the Incidence of Neuropathic Post-Amputation Pain: 
Results from the VIPER Cohort of Injured Military Personnel 
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Background 

Methods 
Phenotypic Assignment 

Results 

Conclusions 

References 

• Chronic pain is a common problem in injured military service members undergoing 
amputation.1  

• Most studies of post-amputation pain only discriminate phantom and residual limb pain.2  
• Sub-classification of pain phenotypes is an important step in the development of disease-

specific therapies.  
• An ongoing collaborative study (Veterans Integrated Pain Evaluation Research (VIPER)) 

between Duke University, Walter Reed National Military Medical Center (WRNMMC) and the 
Durham VAMC is being conducted to further define post-amputation clinical phenotypes and 
discover circulating biomarkers of persistent pain.  

• Here we make a report on 124 military service members who have undergone clinical 
assessment and phenotypic adjudication. 

After IRB approval, the VIPER clinical 
cohort was assessed using validated 
questionnaire instruments: 
• Brief Pain Inventory (BPI) 
• Self-Reported Leeds Assessment of 

Neuropathic Symptoms and Signs 
Pain Scale (S-LANSS) 

• Complex Regional Pain Syndrome 
(Budapest Clinical Criteria) 

• Phantom and residual limb pain 
questionnaires 

• A formal endpoint adjudication was 
performed using the algorithm 
previously reported by our group3 
• Phantom and residual limb pain 

were discriminated. 
• Residual limb pain was then sub-

categorized into a) Neuroma b) 
CRPS c) Mosaic Neuralgia or d) 
Somatic. 

• Using the Duke Post-Amputation Pain Algorithm (Duke PAPA), we discriminated 
between several post-amputation pain subtypes in military service members.  
• We found an overall incidence of post-amputation pain (PAP) of 64.5%.   
• When these PAP cases were further sub-categorized: 

• 90% described phantom pain 
• 95% described residual limb pain (RLP) 
• There was significant overlap with these diagnoses, but they did not 

always co-exist 
 

• Furthermore, of those subjects with RLP the following diagnostic categories 
were noted: 
• 46.3% neuroma 
• 18.8% CRPS 
• 10% Mosaic neuralgia (neuralgic pain not otherwise specified) 
• 38.8% somatic 
 

• In our analysis of retrospective catheter placement data, we found a significantly 
decreased incidence of neuropathic pain in patients receiving regional catheters 
within 7 days of injury. 

• We observed phenotypic complexity of post-amputation pain symptoms in this cohort 
including: 
• Strong overlap in the diagnoses of phantom and residual limb pain 
• Several distinct subtypes of residual limb neuropathic pain 
• A predominant contribution of neuroma symptoms in service members with residual 

limb pain 
 

• Additionally, we observed that the use of early regional anesthesia catheters was 
associated with a decreased incidence of chronic neuropathic pain. 

1. Reiber GE, McFarland LV, Hubbard S, et al. Servicemembers and veterans with major traumatic limb loss from Vietnam war and 
OIF/OEF conflicts: survey methods, participants, and summary findings. J Rehabil Res Dev. 2010;47(4):275-297. 

2. Ephraim PL, Wegener ST, MacKenzie EJ, Dillingham TR, Pezzin LE. Phantom pain, residual limb pain, and back pain in amputees: 
results of a national survey. Arch Phys Med Rehabil. Oct 2005;86(10):1910-1919. 

3. Lindsay DR, Pyati S, Buchheit TE, Shaw A. Residual limb pain: more than a single entity? Anesthesiology. Jan 2012;116(1):224. 

DUKE 
Extraordinary Care – Through a Culture of 

Innovation 

Supported by Department of Defense (DM102142) 
                        

 

Figure 1: Adjudication algorithm utilized to assign patients to their respective 
groups. 

Figure 2:  
Phenotypic variation in post-amputation pain demonstrating significant overlap between residual limb pain 
and phantom limb pain.  Also, there is substantial overlap between RLP-Neuroma and RLP-CRPS  
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Neuropathic Pain and Regional Catheter Placement 

Figure 3: Regional Catheter use and decreased incidence of pain with varying timeframes of placement.  The * 
denotes statistical significance.      




